Structural Analysis of Selenium Coordination Compounds and Mesoporous TiO2-Based Photocatalysts for Hydrogen Generation
- PMID: 40237539
- PMCID: PMC12042259
- DOI: 10.1021/acs.inorgchem.4c05325
Structural Analysis of Selenium Coordination Compounds and Mesoporous TiO2-Based Photocatalysts for Hydrogen Generation
Abstract
This study reports the synthesis of ten coordination compounds (1-10) derived from the ligand bis((3-aminopyridin-2-yl)selanyl)methane (L) and different metal centers (CoII, CuI, CuII, ZnII, and AgI). Single crystals of the complexes were obtained via slow diffusion from overlaid solutions of ligand L and the corresponding metal. Their crystalline structures were determined by single-crystal X-ray diffraction (SCXRD) and further characterized using spectroscopic, spectrometric, and voltammetric techniques. Complexes 1-5, 7, and 10 were evaluated as cocatalysts of mesoporous titanium dioxide (m-TiO2) for photocatalytic hydrogen production via water photolysis under solar light simulation, using triethanolamine (TEOA) as the sacrificial agent. The results showed that complexes 4, 5, 7, and 10 enhanced m-TiO2 photocatalytic activity, achieving hydrogen evolution rates at least four times higher than standard m-TiO2 and P25. Among these, the photocatalyst m-TiO2-7 (7 = [Cu2(μ-SO4)2L2]) exhibited the highest hydrogen production, reaching approximately 7800 μmol/g over a 6-h experiment-nearly 26 times greater than pure m-TiO2 (300 μmol/g). These findings highlight the potential of organoselenium metal complexes for the development of novel photocatalytic materials based on nonprecious metals.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Chen X.; Shen S.; Guo L.; Mao S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110 (11), 6503–6570. 10.1021/cr1001645. - DOI - PubMed
- Wang Q.; Domen K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem. Rev. 2020, 120 (2), 919–985. 10.1021/acs.chemrev.9b00201. - DOI - PubMed
- Qi K.; Cheng B.; Yu J.; Ho W. A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 2017, 38 (12), 1936–1955. 10.1016/S1872-2067(17)62962-0. - DOI
- Maeda K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol. C 2011, 12 (4), 237–268. 10.1016/j.jphotochemrev.2011.07.001. - DOI
- Mohamadpour F.; Amani A. M. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv. 2024, 14 (29), 20609–20645. 10.1039/D4RA03259D. - DOI - PMC - PubMed
- Agbe H.; Nyankson E.; Raza N.; Dodoo-Arhin D.; Chauhan A.; Osei G.; Kumar V.; Kim K.-H. Recent advances in photoinduced catalysis for water splitting and environmental applications. J. Ind. Eng. Chem. 2019, 72, 31–49. 10.1016/j.jiec.2019.01.004. - DOI
- Eddy D. R.; Permana M. D.; Sakti L. K.; Sheha G. A. N.; Hidayat S. S.; Takei T.; Kumada N.; Rahayu I. Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials 2023, 13, 704. 10.3390/nano13040704. - DOI - PMC - PubMed
-
- Ahluwalia R. K.; Wang X.; Rousseau A.; Kumar R. Fuel economy of hydrogen fuel cell vehicles. J. Power Sources 2004, 130 (1–2), 192–201. 10.1016/j.jpowsour.2003.12.061. - DOI
- Fujishima A.; Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. 10.1038/238037a0. - DOI - PubMed
-
- Umair M.; Palmisano G.; Sakkaf R. A.; Jitan S. A.; Pintar A.; Žerjav G.; Palmisano L.; Loddo V.; Bellardita M. Pt-Nb2O5-TiO2 based semiconductors for photo-reforming of glucose and fructose aqueous solutions. Appl. Surf. Sci. 2024, 648, 159030. 10.1016/j.apsusc.2023.159030. - DOI
- Moinuddin A. A.; Kotkondawar A. V.; Hippargi G.; Anshul A.; Rayalu S. A promising photo-thermal catalytic approach for hydrogen generation from sulphide bearing wastewater. Int. J. Hydrogen Energy 2024, 51, 1151–1160. 10.1016/j.ijhydene.2023.07.178. - DOI
- Deka T.; Nair R. G. Recent advancements in surface plasmon resonance and Schottky Junction assisted photocatalytic water splitting of noble metal decorated Titania: A review. Int. J. Hydrogen Energy 2024, 59, 322–342. 10.1016/j.ijhydene.2024.02.002. - DOI
- Li H.; Zhu B.; Sun J.; Gong H.; Yu J.; Zhang L. Photocatalytic hydrogen production from seawater by TiO2/RuO2 hybrid nanofiber with enhanced light absorption. J. Colloid Interface Sci. 2024, 654, 1010–1019. 10.1016/j.jcis.2023.10.074. - DOI - PubMed
- Rafique M.; Hajra S.; Irshad M.; Usman M.; Imran M.; Assiri M. A.; Ashraf W. M. Hydrogen Production Using TiO2-Based Photocatalysts: A Comprehensive Review. ACS Omega 2023, 8 (29), 25640–25648. 10.1021/acsomega.3c00963. - DOI - PMC - PubMed
- Shao C.; Gao D.; Zhang X.; Long H.; Yu H. Optimizing H-adsorption affinity on electron-enriched Pdδ− active sites for efficient photocatalytic H2 evolution. Appl. Surf. Sci. 2025, 680, 161438. 10.1016/j.apsusc.2024.161438. - DOI
-
- Xie A.; Tao Y.-W.; Peng C.; Luo G.-G. A nickel pyridine-selenolate complex for the photocatalytic evolution of hydrogen from aqueous solutions. Inorg. Chem. Commun. 2019, 110, 107598. 10.1016/j.inoche.2019.107598. - DOI
- Krief A.; Wemmel T. V.; Redon M.; Dumont W.; Delmotte C. The First Synthesis of Organic Diselenolates: Application to the Synthesis of Diorganyl Diselenides. Angew. Chem., Int. Ed. 1999, 38 (15), 2245–2247. - PubMed
- Mugesh G.; Panda A.; Singh H. B.; Punekar N. S.; Butcher R. J. Glutathione Peroxidase-like Antioxidant Activity of Diaryl Diselenides: A Mechanistic Study. J. Am. Chem. Soc. 2001, 123 (5), 839–850. 10.1021/ja994467p. - DOI - PubMed
- Ivanova A.; Arsenyan P. Rise of diselenides: Recent advances in the synthesis of heteroarylselenides. Coord. Chem. Rev. 2018, 370, 55–68. 10.1016/j.ccr.2018.05.015. - DOI
- Nogueira C. W.; Quinhones E. B.; Jung E. A. C.; Zeni G.; Rocha J. B. T. Anti-inflammatory and antinociceptive activity of diphenyl diselenide. Inflamm. Res. 2003, 52 (2), 56–63. 10.1007/s000110300001. - DOI - PubMed
- Giurg M.; Gołąb A.; Suchodolski J.; Kaleta R.; Krasowska A.; Piasecki E.; Piętka-Ottlik M. Reaction of bis[(2-chlorocarbonyl)phenyl] Diselenide with Phenols, Aminophenols, and Other Amines towards Diphenyl Diselenides with Antimicrobial and Antiviral Properties. Molecules 2017, 22 (6), 974. 10.3390/molecules22060974. - DOI - PMC - PubMed
- van der Toorn J. C.; Kemperman G.; Sheldon R. A.; Arends I. W. C. E. Diphenyldiselenide-Catalyzed Selective Oxidation of Activated Alcohols with tert-Butyl Hydroperoxide: New Mechanistic Insights. J. Org. Chem. 2009, 74 (8), 3085–3089. 10.1021/jo900059y. - DOI - PubMed
- Burger M. E.; Fachinetto R.; Wagner C.; Perottoni J.; Pereira R. P.; Zeni G.; Rocha J. B. T. Effects of diphenyl–diselenide on orofacial dyskinesia model in rats. Brain Res. Bull. 2006, 70 (2), 165–170. 10.1016/j.brainresbull.2006.05.002. - DOI - PubMed
- Ban Y.-L.; You L.; Feng K.-W.; Ma F.-C.; Jin X.-L.; Liu Q. Meyer–Schuster-Type Rearrangement of Propargylic Alcohols into α-Selenoenals and -enones with Diselenides. J. Org. Chem. 2021, 86 (7), 5274–5283. 10.1021/acs.joc.1c00167. - DOI - PubMed
- Zhang C.; Wang H.; Liang W.; Yang Y.; Cong C.; Wang Y.; Wang S.; Wang X.; Wang D.; Huo D.; Feng H. Diphenyl diselenide protects motor neurons through inhibition of microglia-mediated inflammatory injury in amyotrophic lateral sclerosis. Pharmacol. Res. 2021, 165, 105457. 10.1016/j.phrs.2021.105457. - DOI - PubMed
- Kedarnath G.; Jain V. K. Pyridyl and pyrimidyl chalcogen (Se and Te) compounds: A family of multi utility molecules. Coord. Chem. Rev. 2013, 257 (7–8), 1409–1435. 10.1016/j.ccr.2013.01.003. - DOI
-
- Laube J.; Jäger S.; Thöne C. Synthesis and Structural Studies of Pyridine-2-selenolates – Reactions with Electrophilic Phosphorus(III) Compounds and Related Complex Chemistry. Eur. J. Inorg. Chem. 2001, 8, 1983–1992.
- Kienitz C. O.; Thöne C.; Jones P. G. Coordination Chemistry of 2,2′-Dipyridyl Diselenide: X-ray Crystal Structures of PySeSePy, [Zn(PySeSePy)Cl2], [(PySeSePy)Hg(C6F5)2], [Mo(SePy)2(CO)3], [W(SePy)2(CO)3], and [Fe(SePy)2(CO)2] (PySeSePy = C5H4NSeSeC5H4N; SePy = [C5H4N(2-Se)-N,Se]). Inorg. Chem. 1996, 35 (13), 3990–3997. 10.1021/ic951454d. - DOI - PubMed
- Cargnelutti R.; Schumacher R. F.; Belladona A. L.; Kazmierczak J. C. Coordination chemistry and synthetic approaches of pyridyl-selenium ligands: A decade update. Coord. Chem. Rev. 2021, 426, 213537. 10.1016/j.ccr.2020.213537. - DOI
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
