Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025:32:25.
doi: 10.1051/parasite/2025017. Epub 2025 Apr 15.

Challenges and lessons from a vector control campaign targeting Glossina palpalis palpalis in an isolated protected forest area in Abidjan, Côte d'Ivoire

Affiliations

Challenges and lessons from a vector control campaign targeting Glossina palpalis palpalis in an isolated protected forest area in Abidjan, Côte d'Ivoire

Yao Jean Rodrigue Konan et al. Parasite. 2025.

Abstract

Vector control (VC) is one of the strategies employed to manage African trypanosomoses. This study aimed at assessing the effectiveness of a VC campaign against Glossina palpalis palpalis using tiny targets (TTs) impregnated with insecticide in an isolated, protected forest in Abidjan, Côte d'Ivoire, while considering ecological, genetic, and operational factors. Between January 2020 and September 2022, 2,712 TTs were deployed at 684 sites, covering a total area of 1.7 km2. VC monitoring was conducted using Vavoua traps during 12 evaluation surveys, between June 2020 and March 2023. Five months after the initial TT deployment, tsetse fly density had decreased by 98.53%. Although tsetse density remained low due to TT redeployment and reinforcement, there was a significant increase a few months after the last redeployment. VC appeared to have minimal impact on the genetic structuring of G. p. palpalis. This suggested recruitment of local surviving tsetse flies all along the VC campaign due to a low probability of tsetse coming into contact with TTs, or to the evolution of behavioral or physiological resistance to control efforts. The genetic study revealed that one of the microsatellite markers used, the GPCAG locus, exhibited a selection signature possibly in response to VC. This could partly explain the challenges encountered in eliminating a seemingly isolated tsetse population thriving in a particularly favorable habitat.

Title: Défis et leçons d’une campagne de lutte antivectorielle ciblant Glossina palpalis palpalis dans une zone forestière protégée isolée à Abidjan, en Côte d’Ivoire.

Abstract: La lutte antivectorielle (LAV) fait partie des stratégies de contrôle des trypanosomoses africaines. La présente étude visait à évaluer l’efficacité d’une campagne de LAV contre Glossina palpalis palpalis avec des écrans de type « tiny targets » (TT) imprégnés d’insecticide dans une forêt isolée et protégée à Abidjan, Côte d’Ivoire, en tenant compte des facteurs écologiques, génétiques et opérationnels. Entre janvier 2020 et septembre 2022, 2 712 TT ont été déployés sur 684 sites totalisant une superficie de 1,7 km2. Le suivi de la LAV a été effectué en utilisant des pièges Vavoua lors de 12 enquêtes d’évaluation menées entre juin 2020 et mars 2023. Cinq mois après le premier déploiement des TT, la densité de glossines avait chuté de 98,53 %. Elle est restée faible grâce aux redéploiements et renforcements en TT, mais a ré-augmenté significativement quelques mois après le dernier redéploiement. Elle semble avoir peu impacté la structuration génétique de G. p. palpalis. Cela suggère un recrutement local de mouches survivantes tout au long de la campagne de LAV, dû à une faible probabilité pour les glossines de rencontrer un TT ou à une possible stratégie d’évitement ou de résistance aux efforts de lutte. L’étude génétique a d’ailleurs révélé que l’un des marqueurs microsatellite utilisé, le locus GPCAG, présentait une signature de sélection possiblement en réponse à la LAV. Ceci permettrait en partie d’expliquer les difficultés rencontrées pour éliminer une population de glossines apparemment isolée mais occupant un biotope particulièrement favorable.

Keywords: African trypanosomoses; Population genetics; Resistance; Tiny target; Tsetse flies; Vector control.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Study area (Source: Institut Pierre Richet, 2024). Figure adapted from Figure 1 of Konan [46]. It represents (red boundary) the three zones of the French military base in which the VC campaign was conducted and the three zones in which traps (in red) were set as part of the entomological surveys conducted outside the base.
Figure 2
Figure 2
Deployments and reinforcements of tiny targets during the vector control campaign. DX: Deployment; D1: First deployment; D2 to D5: Replacement of all previously set tiny targets; R: Reinforcement with additional tiny targets.
Figure 3
Figure 3
Distribution of control devices in the study area in September 2022 (last reinforcements) (Source: Institut Pierre Richet, 2024).
Figure 4
Figure 4
Distribution of vector control monitoring sites (Source: Institut Pierre Richet, 2024).
Figure 5
Figure 5
Boxplot of the number of captured tsetse flies during the entomological evaluation in the 25 T0 sentinel traps according to zones. The boxplot (vertical bars in grey) shows the median and interquartile range, the whiskers show the 10th and 90th centiles and the black dots show all values >90th centile. The average catches per trap and per day (ADT) are represented by the blue dots.
Figure 6
Figure 6
Boxplot of the number of captured tsetse flies with the T0 and supplementary traps. The boxplot (vertical bars in grey) shows the median and interquartile range, the whiskers show the 10th and 90th centiles and the black dots show all values >90th centile. The average catches per trap and per day (ADT) are represented by the blue dots.
Figure 7
Figure 7
Frequencies of the main alleles (219, 213, 210, 216, 222, and 225) at the GPCAG locus before and after the VC campaign. C0: Baseline entomological survey in May 2019; C23: Entomological evaluation in March 2023 (more than 3 years after the implementation of the VC).
Figure 8
Figure 8
Factorial Correspondence Analysis obtained with the seven neutral loci. CohortX: Individuals are represented by empty circles of different colors (one color for one cohort).

References

    1. Baker M, Krafsur E (2001) Identification and properties of microsatellite markers in tsetse flies Glossina morsitans sensu lato (Diptera: Glossinidae). Molecular Ecology Notes, 1, 234–236. - PMC - PubMed
    1. Belkhir K, Borsa P, Raufaste N, Bonhomme F. 2004. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II: Montpellier, France. Available at http://www.genetix.univ-montp2.fr/genetix/genetix.htm.
    1. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57, 289–300.
    1. Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.
    1. Berté D, De Meeûs T, Kaba D, Séré M, Djohan V, Courtin F, Kassi MN, Koffi M, Jamonneau V, Ta BTD. 2019. Population genetics of Glossina palpalis palpalis in sleeping sickness foci of Côte d’Ivoire before and after vector control. Infection, Genetics and Evolution, 75, 103963. - PMC - PubMed

LinkOut - more resources