Quercetin-loaded PEGylated liposomes alleviate testicular dysfunction in alloxan-induced diabetic rats: The role of Kisspeptin/Neurokinin B/Dynorphin pathway
- PMID: 40239742
- DOI: 10.1016/j.taap.2025.117337
Quercetin-loaded PEGylated liposomes alleviate testicular dysfunction in alloxan-induced diabetic rats: The role of Kisspeptin/Neurokinin B/Dynorphin pathway
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that can lead to serious complications, including testicular dysfunction. This dysfunction is considered a significant cause of male infertility. Quercetin (Que), a naturally existing flavonoid with versatile biological functions, has limited water solubility and low bioavailability. The current study was designed to develop a bioavailable formulation of Que. via encapsulating it in PEGylated liposomes (Que-PEG-Lip) and determine whether this formulation is effective in the treatment of alloxan-induced testicular injury via targeting Kisspeptin/Neurokinin B/Dynorphin/steroidogenesis signaling pathway. Thirty-two male Sprague Dawley rats were randomly divided into four groups: Control, alloxan-induced diabetes with testicular dysfunction (ALX), ALX + metformin (MET) and ALX + Que-PEG-Lip. The results showed that treatment of ALX group with Que-PEG-Lip significantly improved the alteration of glycemic index, serum reproductive hormones, testicular antioxidant status, testicular Kiss-1, androgen receptor (AR), and proliferation marker protein (ki67) immunoexpression in compared to ALX group. Moreover, the treatment of ALX group with Que-PEG-Lip regulated the Kisspeptin/Neurokinin B/Dynorphin/steroidogenesis pathway gene expression. Interestingly, the outcomes of the molecular docking analysis revealed a strong agonistic effect of Que. on the kisspeptin, neurokinin, and dynorphin receptors. In conclusion, Que-PEG-Lip mitigated the testicular dysfunction in alloxan-induced diabetic rats via regulation of hypothalamic-pituitary-gonadal axis signaling pathway and alleviation the testicular oxidative stress.
Keywords: Androgen receptor; Diabetes; Liposomes; Oxidative stress; Quercetin-loaded PEGylated; Testicular dysfunction.
Copyright © 2025 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
