Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jul 4;19(3):243-251.
doi: 10.5582/bst.2025.01109. Epub 2025 Apr 17.

Integrative neurorehabilitation using brain-computer interface: From motor function to mental health after stroke

Affiliations
Free article
Review

Integrative neurorehabilitation using brain-computer interface: From motor function to mental health after stroke

Ya-Nan Ma et al. Biosci Trends. .
Free article

Abstract

Stroke remains a leading cause of mortality and long-term disability worldwide, frequently resulting in impairments in motor control, cognition, and emotional regulation. Conventional rehabilitation approaches, while partially effective, often lack individualization and yield suboptimal outcomes. In recent years, brain-computer interface (BCI) technology has emerged as a promising neurorehabilitation tool by decoding neural signals and providing real-time feedback to enhance neuroplasticity. This review systematically explores the use of BCI systems in post-stroke rehabilitation, focusing on three core domains: motor function, cognitive capacity, and emotional regulation. This review outlines the neurophysiological principles underpinning BCI-based motor rehabilitation, including neurofeedback training, Hebbian plasticity, and multimodal feedback strategies. It then examines recent advances in upper limb and gait recovery using BCI integrated with functional electrical stimulation (FES), robotics, and virtual reality (VR). Moreover, it highlights BCI's potential in cognitive and language rehabilitation through EEG-based neurofeedback and the integration of artificial intelligence (AI) and immersive VR environments. In addition, it discusses the role of BCI in monitoring and regulating post-stroke emotional disorders via closed-loop systems. While promising, BCI technologies face challenges related to signal accuracy, device portability, and clinical validation. Future research should prioritize multimodal integration, AI-driven personalization, and large-scale randomized trials to establish long-term efficacy. This review underscores BCI's transformative potential in delivering intelligent, personalized, and cross-domain rehabilitation solutions for stroke survivors.

Keywords: cognitive reconstruction; motor dysfunction; neural plasticity; neurofeedback; neurorehabilitation; post-stroke depression.

PubMed Disclaimer

Similar articles