Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in cardiovascular-kidney-metabolic syndrome stages 0-3 and the development of a machine learning prediction model: a nationwide prospective cohort study
- PMID: 40241176
- PMCID: PMC12004813
- DOI: 10.1186/s12933-025-02729-1
Estimated glucose disposal rate outperforms other insulin resistance surrogates in predicting incident cardiovascular diseases in cardiovascular-kidney-metabolic syndrome stages 0-3 and the development of a machine learning prediction model: a nationwide prospective cohort study
Abstract
Background: The American Heart Association recently introduced the concept of cardiovascular-kidney-metabolic (CKM) syndrome, highlighting the increasing importance of the complex interplay between metabolic, renal, and cardiovascular diseases (CVD). While substantial evidence supports a correlation between the estimated glucose disposal rate (eGDR) and CVD events, its predictive value compared with other insulin resistance (IR) indices, such as triglyceride-glucose (TyG) index, TyG-waist circumference, TyG-body mass index, TyG-waist-to-height ratio, triglyceride-to-high density lipoprotein cholesterol ratio, and the metabolic score for insulin resistance, remains unclear.
Methods: This prospective cohort study utilized data from the China Health and Retirement Longitudinal Study (CHARLS). The individuals were categorized into four subgroups based on the quartiles of eGDR. The associations between eGDR and incident CVD were evaluated using multivariate logistic regression analyses and restricted cubic spline. Seven machine learning models were utilized to assess the predictive value of the eGDR index for CVD events. To assess the model's performance, we applied receiver operating characteristic (ROC) and precision-recall (PR) curves, calibration curves, and decision curve analysis.
Results: A total of 4,950 participants (mean age: 73.46 ± 9.93 years), including 50.4% females, were enrolled in the study. During follow-up between 2011 and 2018, 697 (14.1%) participants developed CVD, including 486 (9.8%) with heart disease and 263 (5.3%) with stroke. The eGDR index outperformed six other IR indices in predicting CVD events, demonstrating a significant and linear relationship with all outcomes. Each 1-unit increase in eGDR was associated with a 14%, 14%, and 19% lower risk of CVD, heart disease, and stroke, respectively, in the fully adjusted model. The incorporation of the eGDR index into predictive models significantly improved prediction performance for CVD events, with the area under the ROC and PR curves equal to or exceeding 0.90 in both the training and testing sets.
Conclusions: The eGDR index outperforms six other IR indices in predicting CVD, heart disease, and stroke in individuals with CKM syndrome stages 0-3. Its incorporation into predictive models enhances risk stratification and may aid in the early identification of high-risk individuals in this population. Further studies are needed to validate these findings in external cohorts.
Keywords: Cardiovascular disease; Cardiovascular-kidney-metabolic syndrome; Estimated glucose disposal rate; Insulin resistance.
© 2025. The Author(s).
Conflict of interest statement
Declarations. Ethics approval and consent to participate: This study protocol was reviewed and approved by the Ethical Review Committee of Peking University (IRB 00001052-11015), and all participants provided written informed consent at the time of participation. Consent for publication: Not applicable. Competing interests: The authors declare no competing interests.
Figures






References
-
- Ndumele CE, Rangaswami J, Chow SL, et al. Cardiovascular-kidney-metabolic health: a presidential advisory from the American heart association. Circulation. 2023;148(20):1606–35. - PubMed
-
- Seferović PM, Petrie MC, Filippatos GS, et al. Type 2 diabetes mellitus and heart failure: a position statement from the heart failure association of the European society of cardiology. Eur J Heart Fail. 2018;20(5):853–72. - PubMed
-
- Damman K, Valente MA, Voors AA, et al. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35(7):455–69. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous