Tracking antibiotics and antibiotic-resistant E. coli in the aquatic environment linked to agriculture
- PMID: 40252751
- DOI: 10.1016/j.envpol.2025.126265
Tracking antibiotics and antibiotic-resistant E. coli in the aquatic environment linked to agriculture
Abstract
The application of manure to fertilize agricultural land is associated with the introduction of antibiotic residues and bacteria, including antibiotic-resistant bacteria, which can reach surface water through runoff and drainage and groundwater through leaching from the soil. This was investigated by sampling 50 surface water locations (before and after fertilization) and 50 groundwater wells for the presence of antibiotic residues and the presence of antibiotic-resistant bacteria. For the latter, Escherichia coli and extended-spectrum β-lactamase (ESBL) producing E. coli were used as indicators and profiled for antibiotic resistance. The presence of a wide range of antibiotic residues, though at low concentrations (0.01-10 μg/L), in freshwater ecosystems highlights the extensive spread of these substances. Only 16 % of the samples were consistently free of antibiotic residues throughout both sampling periods. Notably, the frequent occurrence of sulfonamides and lincomycin in surface waters raises concerns as their concentrations occasionally exceed the predicted no-effect levels for antimicrobial resistance selection. Maximum concentrations were reported at 8.83 μg/L and 1.60 μg/L for sulfamethoxazole and lincomycin, respectively. Additionally, resistance patterns in E. coli indicate increased resistance to sulfamethoxazole following the fertilization period, suggesting that the application of manure on fields contributes to a rise in antibiotic resistance from 20 % to 48 %. Although antibiotic contamination in groundwater is less prevalent, antibiotic resistance remains widespread. In particular, ESBL-producing E. coli exhibit heightened resistance levels, not limited to β-lactam antibiotics. The detection of resistance to critical last-resort antibiotics such as carbapenems and colistin further emphasizes the urgency of addressing antibiotic resistance in environmental contexts. This study highlights the need for continued monitoring and the implementation of legislation to reduce antibiotic pollution and tackle resistance in aquatic ecosystems.
Keywords: Agricultural runoff; Antibiotics; E. coli; ESBL; Freshwater; Resistance.
Copyright © 2025 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
