AMUSET-TICA: A Tensor-Based Approach for Identifying Slow Collective Variables in Biomolecular Dynamics
- PMID: 40254940
- PMCID: PMC12182257
- DOI: 10.1021/acs.jctc.5c00076
AMUSET-TICA: A Tensor-Based Approach for Identifying Slow Collective Variables in Biomolecular Dynamics
Abstract
Elucidating collective variables (CVs) for biomolecular dynamics is crucial for understanding numerous biological processes. By leveraging the tensor-train data structure, a multilinear version of the AMUSE (Algorithm for Multiple Unknown Signals) algorithm for Koopman approximation (AMUSEt) was recently developed to identify CVs for biomolecular dynamics. To find slow CVs, AMUSEt transforms input features (e.g., pairwise atomic distances) into nonlinear basis functions (e.g., Gaussian functions) and encodes these nonlinear basis functions within a tensor-train structure via time-lagged correlation functions. Due to the need to fit these tensor-train data structures into computer memory, AMUSEt can handle only a limited number of input features. Consequently, AMUSEt relies on manually selecting and ranking features based on physical intuition to fully capture the slow dynamics. However, when applied to complex biological systems with numerous features, this selection and ranking process becomes increasingly challenging. To address this challenge, here we present AMUSET-TICA (AMUSEt-based Time-lagged Independent Component Analysis), a CV-identification method using time-structure-independent components (tICs) as the input features for AMUSEt. The key insight of AMUSET-TICA lies in its highly effective embedding of high-dimensional atomistic protein conformations, achieved by expanding orthogonal tICs into overlapping Gaussian basis functions through a tensor-product data structure. This eliminates the need for manually selecting and ranking input features for a wide range of biomolecular systems. We demonstrate that AMUSET-TICA consistently and significantly outperforms AMUSEt and tICA in identifying slow CVs for three different biomolecular systems: alanine dipeptide, the N-terminal domain of L9 (NTL9), and the FIP35 WW domain. For all these systems, the CVs generated by AMUSET-TICA accurately describe the slowest dynamical modes underlying these biological conformational changes. Furthermore, we show that AMUSET-TICA achieves performance comparable to deep-learning approaches like VAMPnets in identifying the slowest dynamical modes, while being significantly more computationally efficient in terms of CPU time. In addition, the CVs yielded by AMUSET-TICA provide insights into the folding mechanisms of NTL9 and the FIP35 WW domain, including CV3 and CV4 of the WW domain, which capture its two parallel folding pathways. We expect AMUSET-TICA can be widely applied to facilitate the investigation of biomolecular dynamics.
Similar articles
-
Upper-Order TICA and Fractional Non-Markovian Process to Model Anomalous Dynamic Regimes.J Chem Theory Comput. 2025 Jul 22;21(14):6711-6728. doi: 10.1021/acs.jctc.5c00540. Epub 2025 Jul 11. J Chem Theory Comput. 2025. PMID: 40643437
-
Memory kernel minimization-based neural networks for discovering slow collective variables of biomolecular dynamics.Nat Comput Sci. 2025 Jul;5(7):562-571. doi: 10.1038/s43588-025-00815-8. Epub 2025 Jun 10. Nat Comput Sci. 2025. PMID: 40495006
-
Molecular feature-based classification of retroperitoneal liposarcoma: a prospective cohort study.Elife. 2025 May 23;14:RP100887. doi: 10.7554/eLife.100887. Elife. 2025. PMID: 40407808 Free PMC article.
-
Assessing the comparative effects of interventions in COPD: a tutorial on network meta-analysis for clinicians.Respir Res. 2024 Dec 21;25(1):438. doi: 10.1186/s12931-024-03056-x. Respir Res. 2024. PMID: 39709425 Free PMC article. Review.
-
Pharmacological and electronic cigarette interventions for smoking cessation in adults: component network meta-analyses.Cochrane Database Syst Rev. 2023 Sep 12;9(9):CD015226. doi: 10.1002/14651858.CD015226.pub2. Cochrane Database Syst Rev. 2023. PMID: 37696529 Free PMC article.
References
-
- Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan Y, Wriggers W. Atomic-Level Characterization of the Structural Dynamics of Proteins. Science 2010, 330 (6002), 341–346. - PubMed
-
- Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan YB, Wriggers W. Atomic-Level Characterization of the Structural Dynamics of Proteins. Science 2010, 330 (6002), 341–346. - PubMed