Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jun 10;54(23):9113-9124.
doi: 10.1039/d5dt00648a.

Development of six-membered saturated cyclic diaminocarbenes in main-group chemistry

Affiliations
Review

Development of six-membered saturated cyclic diaminocarbenes in main-group chemistry

Gargi Kundu et al. Dalton Trans. .

Abstract

In recent years, there has been a remarkable surge in the utilization of saturated N-heterocyclic carbenes (NHCs) as ligands in main group chemistry. While the field has predominantly focused on five-membered NHCs and cyclic alkyl(amino) carbene (CAAC) ligands, the investigation of six-membered NHCs (6-NHCs) has only just begun. Despite possessing higher nucleophilicity than their five-membered counterparts, 6-NHCs have been less explored due to their lack of structural rigidity. This feature article aims to highlight recent developments in 6-NHCs in only main group chemistry. Exciting new studies have demonstrated the activation of B-H bonds in HBpin, ring expansion from a six-membered to a seven-membered ring under ambient conditions, and the stabilization of transient units "H-BO" and "(OH)BO", among other intriguing phenomena. A major focus of this review is on synthetic approaches for 6-NHC-stabilized main-group compounds and their unusual properties, as revealed by spectroscopic and crystallographic data. While the chemistry of 6-NHCs is still in its nascent stage, the findings presented in this feature article underscore the need for its exploration and further investigation. Furthermore, this review provides valuable insights into effective synthetic methods for creating new 6-NHC·main group (B, Al, Si, P, Zn, etc.) complexes, along with mechanistic explanations for some of these reactions. These advances hold great promise for the future development of this exciting and rapidly evolving field of N-heterocyclic carbene chemistry.

PubMed Disclaimer

LinkOut - more resources