Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Nov;32(11):1954-1969.
doi: 10.1038/s41418-025-01513-8. Epub 2025 Apr 22.

Integrative multiomic approaches reveal ZMAT3 and p21 as conserved hubs in the p53 tumor suppression network

Affiliations

Integrative multiomic approaches reveal ZMAT3 and p21 as conserved hubs in the p53 tumor suppression network

Anthony M Boutelle et al. Cell Death Differ. 2025 Nov.

Abstract

TP53, the most frequently mutated gene in human cancer, encodes a transcriptional activator that induces myriad downstream target genes. Despite the importance of p53 in tumor suppression, the specific p53 target genes important for tumor suppression remain unclear. Recent studies have identified the p53-inducible gene Zmat3 as a critical effector of tumor suppression, but many questions remain regarding its p53-dependence, activity across contexts, and mechanism of tumor suppression alone and in cooperation with other p53-inducible genes. To address these questions, we used Tuba-seqUltra somatic genome editing and tumor barcoding in a mouse lung adenocarcinoma model, combinatorial in vivo CRISPR/Cas9 screens, meta-analyses of gene expression and Cancer Dependency Map data, and integrative RNA-sequencing and shotgun proteomic analyses. We established Zmat3 as a core component of p53-mediated tumor suppression and identified Cdkn1a as the most potent cooperating p53-induced gene in tumor suppression. We discovered that ZMAT3/CDKN1A serve as near-universal effectors of p53-mediated tumor suppression that regulate cell division, migration, and extracellular matrix organization. Accordingly, combined Zmat3-Cdkn1a inactivation dramatically enhanced cell proliferation and migration compared to controls, akin to p53 inactivation. Together, our findings place ZMAT3 and CDKN1A as hubs of a p53-induced gene program that opposes tumorigenesis across various cellular and genetic contexts.

PubMed Disclaimer

Conflict of interest statement

Competing interests: RM is on the Advisory Boards of Kodikaz Therapeutic Solutions, Orbital Therapeutics, Pheast Therapeutics, 858 Therapeutics, Prelude Therapeutics, Mubadala Capital, and Aculeus Therapeutics. RM is a co-founder and equity holder of Pheast Therapeutics, MyeloGene, and Orbital Therapeutics. The other authors declare no competing interest. Ethics: All animal experiments were performed in accordance with the Stanford University Administrative Panel on Laboratory Animal Care (protocol number 10382) guidelines and regulations. Mice (Mus musculus) were maintained at Stanford University’s Comparative Medicine Pavilion and Research Animal Facility according to practices prescribed by the National Institutes of Health and the Institutional Animal Care and Use Committee (IACUC). The Association for Assessment and Accreditation of Laboratory Animal Care provides additional accreditation to Stanford University.

Update of

References

    1. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333. - PMC - PubMed
    1. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat. 2002;19:607–14. - PubMed
    1. Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, et al. Distinct p53 transcriptional programs dictate acute DNA damage responses and tumor suppression. Cell. 2011;145:571–83. - PMC - PubMed
    1. Jiang D, Brady CA, Johnson TM, Lee EY, Park EJ, Scott MP, et al. Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages. Proc Natl Acad Sci USA. 2011;108:17123–8. - PMC - PubMed
    1. Mello SS, Valente LJ, Raj N, Seoane JA, Flowers BM, McClendon J, et al. A p53 super-tumor suppressor reveals a tumor suppressive p53-Ptpn14-yap axis in pancreatic cancer. Cancer Cell. 2017;32:460–473.e6. - PMC - PubMed

MeSH terms

Substances