Conformational plasticity of mitochondrial VDAC2 controls the kinetics of its interaction with cytosolic proteins
- PMID: 40267181
- PMCID: PMC12017312
- DOI: 10.1126/sciadv.adv4410
Conformational plasticity of mitochondrial VDAC2 controls the kinetics of its interaction with cytosolic proteins
Abstract
The voltage-dependent anion channel (VDAC) is a key conduit of the mitochondrial outer membrane for water-soluble metabolites and ions. Among the three mammalian isoforms, VDAC2 is unique because of its embryonic lethality upon knockout. Using single-molecule electrophysiology, we investigate the biophysical properties that distinguish VDAC2 from VDAC1 and VDAC3. Unlike the latter, VDAC2 exhibits dynamic switching between multiple high-conductance, anion-selective substates. Using α-synuclein (αSyn)-a known VDAC1 cytosolic regulator-we found that higher-conductance substates correlate with increased on-rates of αSyn-VDAC2 interaction but shorter blockage times, maintaining a consistent equilibrium constant across all substates. This suggests that αSyn detects VDAC2's dynamic structural variations before final binding. We explored the dependence of VDAC2's unique amino-terminal extension and cysteines on substate behavior, finding that both structural elements modulate substate occurrence. The discovered conformational flexibility enables VDAC2 recognition by diverse binding partners, explaining its critical physiological role via dynamical adaptation to mitochondrial metabolic conditions.
Figures







Similar articles
-
α-Synuclein emerges as a potent regulator of VDAC-facilitated calcium transport.Cell Calcium. 2021 May;95:102355. doi: 10.1016/j.ceca.2021.102355. Epub 2021 Feb 2. Cell Calcium. 2021. PMID: 33578201 Free PMC article.
-
Role of cysteines in mammalian VDAC isoforms' function.Biochim Biophys Acta. 2016 Aug;1857(8):1219-1227. doi: 10.1016/j.bbabio.2016.02.020. Epub 2016 Mar 4. Biochim Biophys Acta. 2016. PMID: 26947058 Free PMC article. Review.
-
Characterization of human VDAC isoforms: a peculiar function for VDAC3?Biochim Biophys Acta. 2010 Jun-Jul;1797(6-7):1268-75. doi: 10.1016/j.bbabio.2010.01.031. Epub 2010 Feb 6. Biochim Biophys Acta. 2010. PMID: 20138821
-
Post-translational modifications of VDAC1 and VDAC2 cysteines from rat liver mitochondria.Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):806-816. doi: 10.1016/j.bbabio.2018.06.007. Epub 2018 Jun 8. Biochim Biophys Acta Bioenerg. 2018. PMID: 29890122
-
Protein-protein interaction networks as a new perspective to evaluate distinct functional roles of voltage-dependent anion channel isoforms.Mol Biosyst. 2017 Nov 21;13(12):2466-2476. doi: 10.1039/c7mb00434f. Mol Biosyst. 2017. PMID: 29028058 Review.
Cited by
-
Is the Voltage-Dependent Anion Channel a Major Player in Neurodegenerative Diseases?Int J Mol Sci. 2025 Jun 26;26(13):6138. doi: 10.3390/ijms26136138. Int J Mol Sci. 2025. PMID: 40649921 Free PMC article. Review.
References
-
- Rahmani Z., Maunoury C., Siddiqui A., Isolation of a novel human voltage-dependent anion channel gene. Eur. J. Hum. Genet. 6, 337–340 (1998). - PubMed
-
- Messina A., Reina S., Guarino F., De Pinto V., VDAC isoforms in mammals. Biochim. Biophys. Acta 1818, 1466–1476 (2012). - PubMed
-
- Piehowski P. D., Zhu Y., Bramer L. M., Stratton K. G., Zhao R., Orton D. J., Moore R. J., Yuan J., Mitchell H. D., Gao Y., Webb-Robertson B. M., Dey S. K., Kelly R. T., Burnum-Johnson K. E., Automated mass spectrometry imaging of over 2000 proteins from tissue sections at 100-μm spatial resolution. Nat. Commun. 11, 8 (2020). - PMC - PubMed
-
- Sampson M. J., Decker W. K., Beaudet A. L., Ruitenbeek W., Armstrong D., Hicks M. J., Craigen W. J., Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J. Biol. Chem. 276, 39206–39212 (2001). - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous