Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 23;15(17):13086-13094.
doi: 10.1039/d5ra00684h. eCollection 2025 Apr 22.

Single step site-selective reaction to construct a Ag2Au2 ← Ag4 supramolecular assembly from hybrid N-heterocyclic carbene (NHC): synthesis, structures and optoelectronic properties

Affiliations

Single step site-selective reaction to construct a Ag2Au2 ← Ag4 supramolecular assembly from hybrid N-heterocyclic carbene (NHC): synthesis, structures and optoelectronic properties

Pooja Das et al. RSC Adv. .

Abstract

Two supramolecular complex assemblies, [Ag4(1)2][PF6]4·4MeCN 2 and Ag(i)-Au(i) mixed metal complex [Ag2Au2(1)2][PF6]4·4MeCN 3, have been prepared from 3-(pyridylmethyl)imidazo[1,5-a]pyridin-4-ylium hexafluorophosphate (1 HPF6), which is the precursor of N-heterocyclic carbene (NHC). These complexes were subsequently analyzed using various spectroscopic techniques to confirm their structural and chemical properties. Transmetallation of Au(i) onto the Ag4 macrocycle results in the formation of an Ag2Au2 macrocyclic assembly. Au(i) selectively binds with the soft donor Ccarbene, whereas Ag(i) binds with comparatively hard donor Npy (py = pyridine). The geometries of 2 and 3 were established by single-crystal X-ray diffraction studies. Both molecules form a 2D network through M-M and several non-covalent interactions. Electrical conductivity measurements revealed that Ag(i) complex 2 is better conductor than Au(i) complex 3. Optoelectronic studies revealed the utility of complexes 2 and 3 as photovoltaic devices. Furthermore, MS-junction potential measurements show that they are suitable for semiconductor devices, with complex 2 being more efficient than complex 3. Finally, in this study, we aimed to explore the scope of (i) the development of heterobimetallic supramolecular organometallic complexes (SOC), (ii) the charge transport behaviour of SOCs, and (iii) the modification of intrinsically conductive SOCs-based electronics.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest to declare.

Figures

Chart 1
Chart 1. Schematic of the spacer role and of the site selectivity nature of Au(i).
Scheme 1
Scheme 1. Site selective metallation of 1 HPF6 with Ag(i) and Au(i). The letters surrounding 1 refer to the NMR assignments; see the Experimental section.
Fig. 1
Fig. 1. Molecular structure of complexes 2(a) and 3(c) (hydrogen atoms, acetonitrile solvent and PF6 are omitted for clarity). Selected bond lengths (Å) and angles (deg): for complex 2: Ag(1)-C(1) 2.096(4), Ag(1)-C(14) 2.096(4), Ag(2)-N(3) 2.149(4), Ag(2)-N(6) 2.149(4), C(1)-Ag(1)-C(14) 171.11(14), N(3)-Ag(2)-N(6) 167.90(15); for complex 3: Au(1)-C(1) 2.020(5), Au(1)-C(14) 2.021(4), Ag(2)-N(3) 2.146(5), Ag(2)-N(6) 2.137(4), N(6)-Ag(1)-N(3) 167.66(18), C(1)-Au(1)-C(14) 173.45(16). Packing diagram of complex 2(b) Ag(2)-Ag(2) 3.2490(6) (intermolecular packing distance), Ag(2)-Ag(2) 3.3461(11) (intramolecular packing distance), and complex 3(d), Ag(2)-Ag(2) 3.3205(13) (intramolecular packing distance), Au(1)-Au(1) 3.2991(4) (intermolecular packing distance).
Fig. 2
Fig. 2. (Left) absorption and emission spectra of 1 HPF6, 2 and 3 recorded in CH3CN at room temperature; (right) time-resolved fluorescence spectra of complexes 2 and 3. The solid red line corresponds to the system's instrument response function (IRF).
Fig. 3
Fig. 3. Current–voltage (IV) characteristics of complexes 2 (top) and 3 (bottom).
Fig. 4
Fig. 4. dVd ln I and H(v) graph of complexes 2 (top) and 3 (bottom).
Fig. 5
Fig. 5. Logarithm plot of I vs. V2 for complexes 2 and 3.
Fig. 6
Fig. 6. Capacitance vs. frequency for 2 and 3.

Similar articles

References

    1. Chakrabarty R. Mukherjee P. S. Stang P. J. Chem. Rev. 2011;111:6810–6918. - PMC - PubMed
    2. Goswami A. Saha S. Biswas P. K. Schmittel M. Chem. Rev. 2020;120:125–199. - PubMed
    3. Fujita M. Tominaga M. Hori A. Therrien B. Acc. Chem. Res. 2005;38:369–378. - PubMed
    4. Gao W.-X. Feng H.-J. Guo B.-B. Lu Y. Jin G.-X. Chem. Rev. 2020;120:6288–6325. - PubMed
    5. Yoshizawa M. Catti L. Acc. Chem. Res. 2019;52:2392–2404. - PubMed
    6. Fujita D. Ueda Y. Sato S. Mizuno N. Kumasaka T. Fujita M. Nature. 2016;540:563–566. - PubMed
    7. Hiraoka S. Harano K. Shiro M. Ozawa Y. Yasuda N. Toriumi K. Shionoya M. Angew. Chem., Int. Ed. 2006;45:6488–6491. - PubMed
    8. Wang S.-C. Cheng K.-Y. Fu J.-H. Cheng Y.-C. Chan Y.-T. J. Am. Chem. Soc. 2020;142:16661–16667. - PubMed
    9. Cai L.-X. Yan D.-N. Cheng P.-M. Xuan J.-J. Li S.-C. Zhou L.-P. Tian C.-B. Sun Q.-F. J. Am. Chem. Soc. 2021;143:2016–2024. - PubMed
    1. Meeuwissen J. Reek J. N. Nat. Chem. 2010;2:615–621. - PubMed
    2. De S. Mahata K. Schmittel M. Chem. Soc. Rev. 2010;39:1555–1575. - PubMed
    3. Li J.-R. Zhou H.-C. Nat. Chem. 2010;2:893–898. - PubMed
    4. Yamanaka M. Yamada Y. Sei Y. Yamaguchi K. Kobayashi K. J. Am. Chem. Soc. 2006;128:1531–1539. - PubMed
    5. Sun Q.-F. Sato S. Fujita M. Angew. Chem., Int. Ed. 2014;53:13510–13513. - PubMed
    6. Ayme J.-F. Beves J. E. Campbell C. J. Leigh D. A. J. Am. Chem. Soc. 2019;141:3605–3612. - PMC - PubMed
    7. Li G. Zhou Z. Yuan C. Guo Z. Liu Y. Zhao D. Liu K. Zhao J. Tan H. Yan X. Angew. Chem., Int. Ed. 2020;59:10013–10017. - PubMed
    1. Mal P. Breiner B. Rissanen K. Nitschke J. R. Science. 2009;324:1697–1699. - PubMed
    2. Rizzuto F. J. von Krbek L. K. S. Nitschke J. R. Nat. Chem. Rev. 2019;3:204–222.
    3. Niki K. Tsutsui T. Yamashina M. Akita M. Yoshizawa M. Angew. Chem., Int. Ed. 2020;59:10489–10492. - PubMed
    4. Howlader P. Mondal B. Purba P. C. Zangrando E. Mukherjee P. S. J. Am. Chem. Soc. 2018;140:7952–7960. - PubMed
    5. Wang L.-J. Li X. Bai S. Wang Y.-Y. Han Y.-F. J. Am. Chem. Soc. 2020;142:2524–2531. - PubMed
    6. Xu L. Zhang D. Ronson T. K. Nitschke J. R. Angew. Chem., Int. Ed. 2020;59:7435–7438. - PMC - PubMed
    7. Kieffer M. Bilbeisi R. A. Thoburn J. D. Clegg J. K. Nitschke J. R. Angew. Chem., Int. Ed. 2020;59:11369–11373. - PMC - PubMed
    1. Zhang M. Saha M. L. Wang M. Zhou Z. Song B. Lu C. Yan X. Li X. Huang F. Yin S. Stang P. J. J. Am. Chem. Soc. 2017;139:5067–5074. - PubMed
    2. McConnell A. J. Wood C. S. Neelakandan P. P. Nitschke J. R. Chem. Rev. 2015;115:7729–7793. - PubMed
    3. Saha M. L. Yan X. Stang P. J. Acc. Chem. Res. 2016;49:2527–2539. - PubMed
    4. Yan X. Wang H. Hauke C. E. Cook T. R. Wang M. Saha M. L. Zhou Z. Zhang M. Li X. Huang F. Stang P. J. J. Am. Chem. Soc. 2015;137:15276–15286. - PubMed
    1. Yoshizawa M. Tamura M. Fujita M. Science. 2006;312:251–254. - PubMed
    2. Kaphan D. M. Levin M. D. Bergman R. G. Raymond K. N. Toste F. D. Science. 2015;350:1235–1238. - PubMed
    3. Brown C. J. Toste F. D. Bergman R. G. Raymond K. N. Chem. Rev. 2015;115:3012–3035. - PubMed
    4. Jongkind L. J. Caumes X. Hartendorp A. P. T. Reek J. N. H. Acc. Chem. Res. 2018;51:2115–2128. - PMC - PubMed
    5. Fang Y. Powell J. A. Li E. Wang Q. Perry Z. Kirchon A. Yang X. Xiao Z. Zhu C. Zhang L. Huang F. Zhou H.-C. Chem. Soc. Rev. 2019;48:4707–4730. - PubMed
    6. Martí-Centelles V. Lawrence A. L. Lusby P. J. J. Am. Chem. Soc. 2018;140:2862–2868. - PubMed
    7. Wang Q.-Q. Gonell S. Leenders S. H. A. M. Dürr M. IvanovićBurmazović I. Reek J. N. H. Nat. Chem. 2016;8:225–230. - PubMed
    8. Guo J. Fan Y.-Z. Lu Y.-L. Zheng S.-P. Su C.-Y. Angew. Chem., Int. Ed. 2020;59:8661–8669. - PubMed
    9. Tan C. Jiao J. Li Z. Liu Y. Han X. Cui Y. Angew. Chem., Int. Ed. 2018;57:2085–2090. - PubMed

LinkOut - more resources