Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 May:383:125493.
doi: 10.1016/j.jenvman.2025.125493. Epub 2025 Apr 24.

Progress in MnO2/MnO2-based materials catalytic ozonation process for water and wastewater treatment

Affiliations
Review

Progress in MnO2/MnO2-based materials catalytic ozonation process for water and wastewater treatment

Jing Liu et al. J Environ Manage. 2025 May.

Abstract

Heterogeneous catalytic ozonation (HCO) utilizes catalysts to enhance the adsorption and decomposition of ozone (O3), promote the formation of reactive oxygen species (ROS), and improve the removal of organic compounds, thereby overcoming some disadvantages of ozonation. MnO2/MnO2-based materials are widely used as catalysts for HCO due to their multi-valent Mn species, environment friendliness, abundant resources, and high efficiency. This review aims to provide an overview of the advancements in HCO using MnO2/MnO2-based materials, focusing on their preparation, structural characteristics, catalytic performance, and proposed mechanisms. In particular, the effects of MnO2 synthesis methods on the crystalline structure and morphology of catalysts are discussed. Then, the catalytic performances of various catalysts involving different phases, morphologies, and facets are compared. Subsequently, the enhanced applications of MnO2-based catalysts in HCO for water treatment are described, including metals doping, metal oxides combination, and MnO2-carrier. Furthermore, approaches of ROS identification are clarified, and the mechanisms of strengthening catalytic ozonation efficiency by MnO2/MnO2-based catalysts are summarized, containing redox couple theory, oxygen vacancy theory, complexation theory, and surface hydroxyl theory. Finally, the potential applications and perspectives of MnO2/MnO2-based catalysts are proposed. This review plans to bridge the gap between research and practical applications, providing new insights into the application of HCO technologies in water treatment.

Keywords: Advanced oxidation processes; Catalytic ozonation; MnO(2) catalysts; Wastewater treatment.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources