Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May:45:7-15.
doi: 10.1016/j.lssr.2025.01.003. Epub 2025 Jan 18.

Mouse hindlimb unloading, as a model of simulated microgravity, leads to dysregulated iron homeostasis in liver and skeletal muscle cells

Affiliations
Free article

Mouse hindlimb unloading, as a model of simulated microgravity, leads to dysregulated iron homeostasis in liver and skeletal muscle cells

Bilal Rah et al. Life Sci Space Res (Amst). 2025 May.
Free article

Abstract

Microgravity exposure can impact various physiological systems, yet its specific effects on liver cells remain inadequately studied. To address this gap, we used a hindlimb unloading (HU) mouse model to simulate microgravity conditions and investigate alterations in iron metabolism within liver and skeletal muscle cells. 16-week-old male C57BL/6j mice were divided into three groups: (i) ground-based control (GC), (ii) hindlimb unloading treated with vehicle (HU-v), and (iii) hindlimb unloading treated with deferoxamine (DFO). After three weeks, mice were euthanized, and samples of gastrocnemius muscle, liver, and serum were collected for analysis. The HU-v group exhibited significant muscle and liver cell atrophy compared to the GC group, along with disrupted iron metabolism, as indicated by altered expression of key iron regulatory proteins, including FTH1, FPN, TFR1, IRP-1, HMOX-1, and Hepcidin. In contrast, the DFO group demonstrated restored iron homeostasis, with protein expression patterns resembling those of the GC group. Serum analysis revealed elevated levels of serum iron, ferritin, and transferrin in the DFO group compared to both HU-v and GC groups, albeit with minimal changes in total iron-binding capacity. These findings suggest that simulated microgravity induces iron overload and cellular atrophy in liver and skeletal muscle cells, highlighting the potential therapeutic benefits of iron chelation in such conditions.

Keywords: Hindlimb unloading; Iron homeostasis; Liver; Microgravity; Skeletal muscles.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources