Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Apr 18;18(4):589.
doi: 10.3390/ph18040589.

Natural Antifungal Alkaloids for Crop Protection: An Overview of the Latest Synthetic Approaches

Affiliations
Review

Natural Antifungal Alkaloids for Crop Protection: An Overview of the Latest Synthetic Approaches

Denise Dozio et al. Pharmaceuticals (Basel). .

Abstract

Alkaloids are nitrogen-containing compounds naturally occurring in plants, microorganisms, and marine organisms. Potent biological activities have been reported to date, ranging from neuroprotective to antioxidant and anticancer effects. Alkaloids have recently gained attention as potential antifungal agents for crop protection due to their broad spectrum of activity, eco-friendly nature, and ability to overcome some of the issues associated with synthetic fungicides, such as resistance development and environmental contamination. Several efforts have been made to obtain natural and nature-derived alkaloids endowed with significant activity against numerous pathogenic fungal strains. In this review, we collect synthetic strategies developed over the past decade to produce alkaloid fungicides for crop protection. Special emphasis is given to recent advancements in obtaining pure natural compounds and more potent analogs endowed with tailored and optimized properties.

Keywords: alkaloids; crop protection; fungicide; phytopathogenic fungi; total synthesis.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Chemical structures of the natural antifungal alkaloids whose synthesis is reported in this paper.
Figure 2
Figure 2
Structure of quinine and its natural analogs.
Scheme 1
Scheme 1
C(sp3)–H activation of 3-aminoquinuclidine and synthesis of intermediate 3: (a) picolinic acid, CDI, DMF; (b) 4-iodoanisole, Pd(OAc)2, Ag2CO3, DMF.
Scheme 2
Scheme 2
Synthesis of building block 9. (a) RuCl3, NaIO4, H2O, EtOAc, CH3CN; (b) HATU, MeNHOMe·HCl, Et3N, DMF; (c) DIBAL-H, DCM; (d) Ph3PMeBr, LiHMDS, DMSO, THF; (e) Zn, HCl, Zn(OTf)2, H2O; (f) IBX, p-TsOH, CH3CN.
Scheme 3
Scheme 3
Conversion of (+)-9 to (−)-quinine. (a) LiHMDS, THF; (b) 6-methoxyquinoline-4-carbaldehyde; (c) Ti(O-iPr)3Cl, MsNHNH2; (d) LiAlH4, MeOH, THF.
Scheme 4
Scheme 4
Total synthesis of (−)-quinine starting from intermediate 11: (a) acetone cyanohydrin, PPh3, DEAD, Et2O; (b) OsO4, NMO, acetone/H2O, then Pb(OAc)4, DCM; (c) NaBH3CN, PMBNH2, AcOH, MeOH; (d) triphosgene, Et3N, DCM, then NaHCO3, Boc2O; (e) NaOH/MeOH, then EDC, HOBt, Et3N, MeNH(OMe)•HCl, DCM; (f) 17, LDA, THF; (g) NaBH4, MeOH; (h) OsO4, NaIO4, 2,6-lutidine, dioxane/H2O; (i) DMP, DCM; (j) MeSO2PT, KHMDS, THF; (k) LiAlH4, THF; (l) TBSOTf, 2,6-lutidine, DCM, then MsCl, Et3N, DCM; (m) DCM/TFA, then NaHCO3, MeCN; (n) (COCl)2, DMSO, Et3N, DCM, then [Rh(COD)Cl]2, dppp, diglyme; (o) NaH/DMSO, then O2.
Scheme 5
Scheme 5
Synthesis of key intermediate syn-29: (a) dimethyl malonate, 10 mol% c1, EtOH, then BnNH2, NaBH(OAc)3, DCM, 97% ee, 85%; (b) LiAlH4, THF, >21:1 dr (isolated), 78%; (c) (COCl)2, DMSO, DCM, then TEA, 9:1 dr (isolated), 82%; (d) pyrrolidine, AcOH, DCM; (e) NaBH4, MeOH.
Scheme 6
Scheme 6
Total synthesis of (–)-quinine starting from intermediate isolated stereoisomer syn-29: (a) TBSCl, imidazole, dry DMF; (b) TMSCH2CH2OH, triphosgene, K2CO3, toluene; (c) i. Pd/C, H2, MeOH, ii. (COCl)2, DMSO, DCM, then TEA; (d) 34, NaH, THF; (e) HCl/MeOH; (f) i. (COCl)2, DMSO, DCM, then TEA; ii. Ph3P+CH3Br, KOt-Bu, THF; (g) ADmix-β, CH3SO2NH2, t-BuOH, H2O, >21:1 dr, 82%; (h) i. trimethylorthoacetate, PPTS, DCM; ii. TMSCl, DCM; iii. K2CO3, MeOH; (i) CsF, t-BuOH, DMF.
Scheme 7
Scheme 7
Synthesis of quininone and quinotoxine starting from quinine. (a) t-BuOK, benzophenone, toluene; (b) H2O/AcOH.
Figure 3
Figure 3
Chemical structure of luotonin A.
Scheme 8
Scheme 8
Synthesis of luotonin A. (a) MgSO4, Na2SO4, THF; (b) 1,2,4-trichlorobenzene, μW; (c) KOH, MeOH/H2O; (d) i. (COCl)2, DCM, DMSO; ii. NaBH4, THF; (e) PPh3, DIAD, THF.
Scheme 9
Scheme 9
Synthesis of luotonin A by copper-catalyzed photoinduced radical domino cyclization reaction. (a) BrCN, Na2CO3, THF, then (b) BzCl, NaH, THF; (c) [(DPEphos)(bcp)Cu]PF6, Cy2NiBu, K2CO3, light (420 nm), MeCN.
Figure 4
Figure 4
Chemical structure of sanguinarine.
Scheme 10
Scheme 10
Synthesis of sanguinarine chloride salt. (a) MeLi, CeCl3, THF, then (b) PPTS, DCM; (c) K2OsO2(OH)4, NMO, THF/H2O then (d) NaIO4·SiO2, Et2O; (e) MeNH2, EtOH, then (f) NaBH4, MeOH, quant; (g) ZnCl2, DCE; (h) phenanthroline, t-BuOK, benzene; (i) DDQ, NaOH, benzene then HCl.
Figure 5
Figure 5
Chemical structures of natural cryptolepine, neocryptolepine, and isocryptolepine.
Scheme 11
Scheme 11
Synthesis of cryptolepine iodine salt. (a) n-BuLi, THF, then 56; (b) PPh3, MoO2Cl2(dmf)2, toluene; (c) aq. NaOH, MeOH; (d) CH3I, sulfolane.
Scheme 12
Scheme 12
Synthesis of cryptolepine, starting from protected pyrrole 60. (a) NBS, H2O, acetone, then (b) Et3N; (c) N-methyl aniline, Et3N, EtOAc, then (d) BF3, EtOAc; (e) POCl3, DMF; (f) Me2NH·HCl, DMF, then (g) aq. Na2CO3.
Scheme 13
Scheme 13
Synthesis of cryptolepine, starting from anthranilic acid 64: (a) bromoacetyl bromide, 1,4-dioxane/DMF 1:1; (b) aniline, DMF; (c) PPA; (d) POCl3; (e) H2, Pd/C, AcOH, NaOAc, 60 psi; (f) MeI, DMF.
Scheme 14
Scheme 14
Synthesis of neocryptolepine. (a) Ac2O, Et3N, reflux; (b) EtOH, H2SO4, 24 h; (c) Fe/HCl, AcOH:EtOH:H2O; (d) Me2SO4, DMF, μW, or Me2SO4, MeCN.
Scheme 15
Scheme 15
Optimized synthesis of neocryptolepine. (a) Et3N, CHCl3; (b) Fe/HCl, AcOH; (c) MeI, THF.
Scheme 16
Scheme 16
Synthesis of neocryptolepine, starting from cyano substrate 78. (a) K2CO3, MeOH; (b) benzyl amine, Pd2(dba)3, xantphos, t-BuONa, toluene; (c) anhydrous AlCl3, benzene; (d) MeI, aq. KOH, THF [37].
Scheme 17
Scheme 17
Synthesis of neocryptolepine, starting from substituted indole 82. (a) iPrOH, MeI; (b) KOH, H2O2; (c) indole, p-TSOH, EtOH.
Scheme 18
Scheme 18
Synthesis of isocryptolepine, starting from 4-amino quinoline 85. (a) Br2, AcOH; (b) Pd(PPh3)4, K2CO3, toluene:EtOH:H2O 3:2:1; (c) t-BuOK, DMSO; (d) MeI, toluene.
Figure 6
Figure 6
Chemical structure of natural β-carbolines.
Scheme 19
Scheme 19
Classical synthesis of harmine via Pictet–Spengler reaction: (a) 0.1 N HCl, acetaldehyde; (b) 5% Pd/C, dry toluene.
Scheme 20
Scheme 20
Synthesis of harmine via Suzuki reaction: (a) bis(pinacolato)diboron, Pd(dppf)Cl2, KOAc, dry 1,4-dioxane; (b) Pd(dppf)Cl2, Cs2CO3, 1,4-dioxane/H2O; (c) PPh3, o-DCB.
Scheme 21
Scheme 21
Synthesis of harmine via Negishi coupling: (a) i. LDA, THF; ii. ZnCl2; iii. Pd XPhos G3, THF; (b) NaHMDS, THF.
Figure 7
Figure 7
Chemical structures of pityriacitrin and pityriacitrin B.
Scheme 22
Scheme 22
Synthesis of pityriacitrin: (a) I2, DMSO.
Scheme 23
Scheme 23
Synthesis of carboline pityriacitrin B. (a) I2, DMSO; (b) NaOH, MeOH, H2O.
Figure 8
Figure 8
Chemical structure of meridianins A-G [51].
Scheme 24
Scheme 24
(a) TsCl, NaOH, H2O, n-Bu4NHSO4, toluene; (b) Ac2O, AlCl3, DCM; (c) DMF-DMA; (d) K2CO3, CH3OCH2CH2OH.
Figure 9
Figure 9
Chemical structure of pyrrolnitrin.
Scheme 25
Scheme 25
Synthesis of pyrrolnitrin. (a) HBPin, Et3N; (b) Pd(OAc)2:SPhos (1:2), K3PO4, n-BuOH:H2O; (c) TBAF, THF.
Figure 10
Figure 10
Chemical structure of penipanoid A.
Scheme 26
Scheme 26
Synthesis of penipanoid A, starting from 4-methoxy phenylacetic acid 111. (a) (COCl)2; (b) formamide, Py, acetone; (c) 114, AcOH; (d) BBr3, DCM.
Scheme 27
Scheme 27
Synthesis of penipanoid A, starting from intermediate 113. (a) NH2-NH2, AcOH; (b) 117, CuI, Cs2CO3, L-proline, DMF; (c) BBr3, DCM.
Scheme 28
Scheme 28
Protection-free synthesis of penipanoid A: (a) formamidine hydrochloride, HATU, DIPEA, DMF; (b) 121, AcOH.
Figure 11
Figure 11
Chemical structure of kealiinine A–C.
Scheme 29
Scheme 29
(a) EtMgBr/THF; (b) N-methyl formanilide, EtMgBr/THF; (c) 126, THF; (d) HCl, DCM; (e) i n-BuLi, THF; ii TsN3; (f) Pd-C, H2, MeOH/THF.
Figure 12
Figure 12
Chemical structure of naamines and naamidines.
Scheme 30
Scheme 30
Synthesis of amino acids 135ac. (a) BnBr, MeOH, K2CO3; (b) N-acetylglycine, AcONa, Ac2O; (c) (i) aqueous NaOH; (ii) aqueous HCl; (d) Pd/C, H2; (e) HCl conc.
Scheme 31
Scheme 31
Synthetic approaches to naamines and naamidines. (a) Boc2O, NEt3, 1,4-dioxane, H2O; (b) BnBr, K2CO3, MeOH; (c) MeI, NaH, THF; (d) N,O-dimethylhydroxylamine hydrochloride, DIPEA, HOBt, EDCI, DCM; (e) 139, THF, Et2O; (f) HCl, H2O; (g) NH2CN, H2O, EtOH; (h) H2, Pd/C, MeOH, AcOH; (i) toluene.
Scheme 32
Scheme 32
Synthesis of (±)-antofine. (a) NaH, THF; (b) H2, Pd/C, EtOAc, then (c) NaN3, TBAI, DMF; (d) DIBAL-H, DCM; (e) TFA, DCM, then (f) HCHO, HCl EtOH.
Figure 13
Figure 13
Chemical structure of (R)-antofine.
Scheme 33
Scheme 33
Synthesis of enantiopure (R)-antofine. (a) CbzN=NCbz, D-Proline, CH3CN, DCM, then (b) Ph3P=CHCOOEt, 94% ee; (c) LiBH4, THF; (d) MsCl, Et3N, DMAP, DCM; (e) H2, Raney Ni, MeOH; (f) HCHO, HCl, EtOH.
Figure 14
Figure 14
Structure of essramycin.
Scheme 34
Scheme 34
Synthesis of essramycin: (a) n-butanol; (b) ethyl acetoacetate, glacial AcOH.
Figure 15
Figure 15
Chemical structure of phenazine-1-carboxylic acid (PCA).
Scheme 35
Scheme 35
Synthesis of phenazine-1-carboxylic acid (PCA): (a) aniline, CuCl2, copper powder, N-ethyl morpholine, 2,3-butanediol; (b) NaBH4, EtONa, EtOH.

Similar articles

Cited by

References

    1. FAO . Achieving Zero Hunger: The Critical Role of Investments in Social Protection and Agriculture. FAO; Rome, Italy: 2015.
    1. Peng Y., Li S.J., Yan J., Tang Y., Cheng J.P., Gao A.J., Yao X., Ruan J.J., Xu B.L. Research Progress on Phytopathogenic Fungi and Their Role as Biocontrol Agents. Front. Microbiol. 2021;12:670135. doi: 10.3389/fmicb.2021.670135. - DOI - PMC - PubMed
    1. Zubrod J.P., Bundschuh M., Arts G., Brühl C.A., Imfeld G., Knäbel A., Payraudeau S., Rasmussen J.J., Rohr J., Scharmüller A., et al. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 2019;53:3347–3365. doi: 10.1021/acs.est.8b04392. - DOI - PMC - PubMed
    1. Pérez-Pizá M.C., Sautua F.J., Szparaga A., Bohata A., Kocira S., Carmona M.A. New Tools for the Management of Fungal Pathogens in Extensive Cropping Systems for Friendly Environments. CRC Crit. Rev. Plant Sci. 2024;43:63–93. doi: 10.1080/07352689.2023.2268921. - DOI
    1. Tsalidis G.A. Human Health and Ecosystem Quality Benefits with Life Cycle Assessment Due to Fungicides Elimination in Agriculture. Sustainability. 2022;14:846. doi: 10.3390/su14020846. - DOI