Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May;15(5):e70241.
doi: 10.1002/ctm2.70241.

Machine-learning analysis identifies "elite" viral controllers with increased survival and homeostatic responses in critical COVID-19

Nadia García-Mateo  1   2 Alejandro Álvaro-Meca  3   4 Tamara Postigo  1 Alicia Ortega  1   2 Amanda de la de la Fuente  1   2 Raquel Almansa  2   5 Noelia Jorge  2 Laura González-González  2 Lara Sánchez Recio  1 Isidoro Martínez  4   6 María Martín-Vicente  6 María José Muñoz-Gómez  4   6 Vicente Más  6 Mónica Vázquez  6 Olga Cano  6 Daniel Vélez-Serrano  7 Luis Tamayo  2   8 José Ángel Berezo  2   8 Rubén Herrán-Monge  2   8 Jesús Blanco  8 Pedro Enríquez  8 Pablo Ryan-Murua  4   9 Amalia de la Martínez de la Gándara  10 Covadonga Rodríguez  10 Gloria Andrade  10 Elena Bustamante-Munguira  2   11 Gloria Renedo Sánchez-Girón  11 Ramón Cicuendez Ávila  11 Juan Bustamante-Munguira  12 Wysali Trapiello  13 Elena Gallego Curto  2   14 Alejandro Úbeda-Iglesias  15 María Salgado-Villén  15 Enrique Berruguilla-Pérez  16 María Del Carmen Del de la Torre  17 Estel Güell  17 Fernando Casadiego  17 Ángel Estella  18 María Recuerda Núñez  18 Juan Manuel Sánchez Calvo  19 Sandra Campos-Fernández  20 Yhivian Peñasco-Martín  20 María Teresa García Unzueta  21 Ignacio Martínez Varela  22 María Teresa Bouza Vieiro  22 Felipe Pérez-García  4   23   24 Ana Moreno-Romero  25 Lorenzo Socias  26 Juan López Messa  27 Leire Pérez Bastida  27 Pablo Vidal-Cortés  28 Lorena Del Del Río-Carbajo  28 Jorge Del Nieto Del Olmo  28 Estefanía Prol-Silva  28 Víctor Sagredo Meneses  29 Noelia Albalá Martínez  29 Milagros González-Rivera  30 José Manuel Gómez  31 Nieves Carbonell  32 María Luisa Blasco  32 David de de Gonzalo-Calvo  2   33 Jessica González  2   33 Jesús Caballero  34 Carme Barberá  35 María Cruz Martín Delgado  36 Luis Jorge Valdivia  37 Caridad Martín-López  38 María Teresa Nieto  38 Ruth Noemí Jorge García  39 Emilio Maseda  40 Ana Loza-Vázquez  41 José María Eiros  42 Anna Motos  2   43 Laia Fernández-Barat  2   43 Joan Casenco-Ribas  43 Adrián Ceccato  2   44 Ferrán Barbé  2   33 David J Kelvin  45   46 Jesús F Bermejo-Martin  1   2   47 Ana P Tedim  1   2 Salvador Resino  4   6 Antoni Torres  2   43
Affiliations

Machine-learning analysis identifies "elite" viral controllers with increased survival and homeostatic responses in critical COVID-19

Nadia García-Mateo et al. Clin Transl Med. 2025 May.
No abstract available

PubMed Disclaimer

Conflict of interest statement

JFBM, AT, FB, RA, JME and APT have a patent application on SARS‐CoV‐2 antigenemia as a predictor of mortality in COVID‐19.

The remaining authors declare no conflicts of interest.

Figures

FIGURE 1
FIGURE 1
SHAP (SHapley Additive exPlanations) value distribution of the top 20 features obtained in the machine learning model for identifying the 90‐day mortality. Each point is a patient. The horizontal position of each point represents the SHAP value (importance higher or lower for prediction) and the direction of each feature for predicting a particular patient. Positive SHAP values predict true positives, and negative SHAP values predict true negatives. The red colour indicates high values, while the blue colour indicates low values of the features for a specific patient. Plasma biomarker values were ln‐transformed. SHAP values were calculated using the Python package XGBoost. Abbreviations: SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2; IL, interleukin; RANTES, regulated on activation, normal T cell expressed and secreted protein; IgG, immunoglobulin G; IgM, immunoglobulin M; TREM‐1, triggering receptor expressed on myeloid cells 1; CCL2, chemokine (C‐C motif) ligand 2; CD27, cluster differentiation 27 molecule; SP‐D, Surfactant protein D; PTX‐3, pentraxin 3; CXCL10, C‐X‐C motif chemokine ligand 10; VCAM‐1, vascular cell adhesion protein.
FIGURE 2
FIGURE 2
90‐day mortality groups (A) and partitional clustering groups (B) visualized using t‐Distributed Stochastic Neighbor Embedding. (C) Kaplan–Meier curves show the cumulative probability of mortality in the first 90 days following ICU admission. T‐SNE, t‐Distributed Stochastic Neighbor Embedding, p‐value, level of significance.
FIGURE 3
FIGURE 3
Heat map showing the three distinct patterns of inflammatory immune response by 90‐day mortality risk group (combitypes). Abbreviations: SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2; IgM, immunoglobulin M; IgG, immunoglobulin G; RANTES, regulated on activation normal T‐cell expressed and secreted protein; TREM‐1, triggering receptor expressed on myeloid cells; G‐CSF, granulocyte colony‐stimulating factor; ICAM‐1, intercellular adhesion molecule 1; VCAM‐1, vascular cell adhesion molecule 1; IL, interleukin; TNF, tumour necrosis factor; CXCL‐10, C‐X‐C motif chemokine ligand 10; CCL2, chemokine (C‐C motif) ligand 2; IFN, interferon; PD‐L1, programmed death‐ligand 1; CD‐27, cluster differentiation 27 molecule; SP‐D, surfactant protein D.
FIGURE 4
FIGURE 4
Machine learning analysis combining host‐response and virological data improves the characterization of subgroups of critically ill COVID‐19 patients with different prognosis. Abbreviations: SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2; IgM, immunoglobulin M; IgG, immunoglobulin G; RANTES, regulated on activation normal T‐cell expressed and secreted protein; TREM‐1, triggering receptor expressed on myeloid cells; G‐CSF, granulocyte colony‐stimulating factor; ICAM‐1, intercellular adhesion molecule 1; VCAM‐1, vascular cell adhesion molecule 1; IL, interleukin; TNF, tumour necrosis factor; CXCL‐10, C‐X‐C motif chemokine ligand 10; CCL2, chemokine (C‐C motif) ligand 2; IFN, interferon; PD‐L1, programmed death‐ligand 1; CD‐27, cluster differentiation 27 molecule; SP‐D, surfactant protein D.

References

    1. Sievers BL, Cheng MTK, Csiba K, et al. SARS‐CoV‐2 and innate immunity: the good, the bad, and the “goldilocks”. Cell Mol Immunol. 2024;21:171‐183. doi:10.1038/s41423-023-01104-y - DOI - PMC - PubMed
    1. André S, Picard M, Cezar R, et al. T cell apoptosis characterizes severe Covid‐19 disease. Cell Death Differ. 2022;29:1486‐1499. doi:10.1038/s41418-022-00936-x - DOI - PMC - PubMed
    1. Brunet‐Ratnasingham E, Morin S, Randolph HE, et al. Sustained IFN signaling is associated with delayed development of SARS‐CoV‐2‐specific immunity. Nat Commun. 2024;15:4177. doi:10.1038/s41467-024-48556-y - DOI - PMC - PubMed
    1. Bermejo‐Martin JF, García‐Mateo N, Motos A, et al. Effect of viral storm in patients admitted to intensive care units with severe COVID‐19 in Spain: a multicentre, prospective, cohort study. Lancet Microbe. 2023;4:e431‐e441. doi:10.1016/S2666-5247(23)00041-1 - DOI - PMC - PubMed
    1. Del Valle DM, Kim‐Schulze S, Huang H‐H, et al. An inflammatory cytokine signature predicts COVID‐19 severity and survival. Nat Med. 2020;26:1636‐1643. doi:10.1038/s41591-020-1051-9 - DOI - PMC - PubMed

LinkOut - more resources