Stable Pincer Gold(III)-TADF Emitters with Extended Donor-Acceptor Separation for Efficient Vacuum-Deposited OLEDs with Operational Lifetime (LT95) up to 3831 h at 1000 cd m-2
- PMID: 40285612
- PMCID: PMC12279227
- DOI: 10.1002/advs.202502529
Stable Pincer Gold(III)-TADF Emitters with Extended Donor-Acceptor Separation for Efficient Vacuum-Deposited OLEDs with Operational Lifetime (LT95) up to 3831 h at 1000 cd m-2
Abstract
Although gold-TADF (thermally activated delayed fluorescence) emitters have attractive prospects as next-generation practical OLED emitters, the performance of OLEDs utilizing gold(I)- and gold(III)-TADF emitters lags behind the requirements of practical applications, and device lifetime has become a bottleneck. Here, novel pincer gold(III)-TADF emitters that are easily fabricated with tunable donor and acceptor ligands are presented. These pincer gold(III)-TADF emitters exhibit an extended molecular π-distance along the transition dipole moment, resulting in a significant reduction in the electron exchange energy between the S1 and T1 excited states, thus narrowing the singlet-triplet energy gap (ΔEST). The combination of small ΔEST and heavy-atom (Au, S) effect greatly enhances spin-flip dynamics and produces efficient TADF (photoluminescence quantum yields up to 90%) with high radiative decay rate constants (kr up to 106 s-1), and short lifetimes (τ less than 1.2 µs) in thin films at room temperature. Vacuum-deposited OLEDs based on these gold(III)-TADF emitters demonstrate impressive stability, achieving i) a high maximum external quantum efficiency (EQEmax) of up to 22.2%, and ii) a record- long operational lifetime (LT95) of 3831 h at an initial luminance of 1000 cd m-2. This excellent durability makes the pincer gold(III)-TADF emitter a promising and competitive alternative to iridium and platinum emitters for practical OLED applications.
Keywords: OLEDs; gold; operational lifetime; singlet–triplet energy gap; thermally activated delayed fluorescence.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures








Similar articles
-
Stable Tetradentate Gold(III)-TADF Emitters with Close to Unity Quantum Yield and Radiative Decay Rate Constant of up to 2 × 106 s-1 : High-Efficiency Green OLEDs with Operational Lifetime (LT90 ) Longer than 1800 h at 1000 cd m-2.Adv Mater. 2022 Dec;34(51):e2206598. doi: 10.1002/adma.202206598. Epub 2022 Nov 14. Adv Mater. 2022. PMID: 36208071
-
Developing Red and Near-Infrared Delayed Fluorescence Emission in Nitrogen-Substituted Donor-Acceptor Polycyclic Hydrocarbon OLED Emitters: A Theoretical Study.J Phys Chem A. 2025 Mar 13;129(10):2396-2410. doi: 10.1021/acs.jpca.4c07345. Epub 2025 Feb 26. J Phys Chem A. 2025. PMID: 40009024 Free PMC article.
-
Deep-Blue Narrowband OLEDs Achieve External Quantum Efficiency Over 40% and Blue Index of 422 by Synergistic π-Extension and Heavy-Atom Effect.Adv Mater. 2025 Jul;37(30):e2502459. doi: 10.1002/adma.202502459. Epub 2025 May 19. Adv Mater. 2025. PMID: 40384183
-
Overview on the Thermally Activated Delayed Fluorescence and Mechanochromic Materials: Bridging Efficiency and Versatility in LECs and OLEDs.Materials (Basel). 2025 Jun 9;18(12):2714. doi: 10.3390/ma18122714. Materials (Basel). 2025. PMID: 40572847 Free PMC article. Review.
-
Comprehensive Review on the Structural Diversity and Versatility of Multi-Resonance Fluorescence Emitters: Advance, Challenges, and Prospects toward OLEDs.Chem Rev. 2025 Jul 23;125(14):6685-6752. doi: 10.1021/acs.chemrev.5c00021. Epub 2025 May 9. Chem Rev. 2025. PMID: 40344420 Free PMC article. Review.
References
-
- a) Tang M.‐C., Chan M.‐Y., Yam V. W.‐W., Chem. Rev. 2021, 121, 7249; - PubMed
- b) Zhou D., To W.‐P., Kwak Y., Cho Y., Cheng G., Tong G. S. M., Che C.‐M., Adv. Sci. 2019, 6, 1802297; - PMC - PubMed
- c) Zhou D., To W.‐P., Tong G. S. M., Cheng G., Du L., Phillips D. L., Che C.‐M., Angew. Chem. Int. Ed. 2020, 59, 6375; - PubMed
- d) To W.‐P., Zhou D., Tong G. S. M., Cheng G., Yang C., Che C.‐M., Angew. Chem. Int. Ed. 2017, 56, 14036; - PubMed
- e) Zhou D., Tong G. S. M., Cheng G., Tang Y.‐K., Liu W., Ma D., Du L., Chen J.‐R., Che C.‐M., Adv. Mater. 2022, 34, 2206598; - PubMed
- f) Cai S., Tong G. S. M., Du L., So G. K.‐M., Hung F.‐F., Lam T.‐L., Cheng G., Xiao H., Chang X., Xu Z.‐X., Che C.‐M., Angew. Chem. Int. Ed. 2022, 61, 202213392; - PubMed
- g) Di D., Romanov A. S., Yang L., Richter J. M., Rivett J. P. H., Jones S., Thomas T. H., Jalebi M. A., Friend R. H., Linnolahti M., Bochmann M., Credgington D., Science 2017, 356, 159; - PubMed
- h) Tang R., Xu S., Du L., Hung F.‐F., Lam T.‐L., Cheng G., Low K.‐H., Wan Q., Wu S., Chen Y., Che C.‐M., Adv. Optical Mater. 2023, 11, 2300950.
-
- a) Wong C.‐Y., Lai S.‐L., Leung M.‐Y., Tang M.‐C., Li L.‐K., Chan M.‐Y., Yam V. W.‐W., J. Am. Chem. Soc. 2023, 145, 2638; - PubMed
- b) Au‐Yeung C. C., Li L.‐K., Tang M.‐C., Lai S.‐L., Cheung W.‐L., Ng M., Chan M.‐Y., Yam V. W.‐W., Chem. Sci. 2021, 12, 9516; - PMC - PubMed
- c) Lee C.‐H., Tang M.‐C., Kong F. K.‐W., Cheung W.‐L., Ng M., Chan M.‐Y., Yam V. W.‐W., J. Am. Chem. Soc. 2020, 142, 520; - PubMed
- d) Malmberg R., von Arx T., Hasan M., Blacque O., Shukla A., McGregor S. K. M., Lo S.‐C., Namdas E. B., Venkatesan K., Chem. Eur. J. 2021, 27, 7265; - PubMed
- e) Beucher H., Kumar S., Merino E., Hu W.‐H., Stemmler G., Cuesta‐Galisteo S., González J. A., Jagielski J., Shih C.‐J., Nevado C., Chem. Mater. 2020, 32, 1605; - PubMed
- f) Avula S., Jhun B. H., Jo U., Heo S., Lee J. Y., You Y., Adv. Sci. 2024, 11, 2305745. - PMC - PubMed
-
- a) Ma J., Schaab J., Paul S., Forrest S. R., Djurovich P. I., Thompson M. E., J. Am. Chem. Soc. 2023, 145, 20097; - PubMed
- b) Feng X., Yang J.‐G., Miao J., Zhong C., Yin X., Li N., Wu C., Zhang Q., Chen Y., Li K., Yang C., Angew. Chem. Int. Ed. 2022, 61, 202202227; - PubMed
- c) Santos J. M. D., Hall D., Basumatary B., Bryden M., Chen D., Choudhary P., Comerford T., Crovini E., Danos A., De J., Diesing S., Fatahi M., Griffin M., Gupta A. K., Hafeez H., Hämmerling L., Hanover E., Haug J., Heil T., Karthik D., Kumar S., Lee O., Li H., Lucas F., Mackenzie C. F. R., Mariko A., Matulaitis T., Millward F., Olivier Y., Qi Q., et al., Chem. Rev. 2024, 124, 13736. - PMC - PubMed
-
- a) Kwok W.‐K., Li L.‐K., Lai S.‐L., Leung M.‐Y., Tang W. K., Cheng S.‐C., Tang M.‐C., Cheung W.‐L., Ko C.‐C., Chan M.‐Y., Yam V. W.‐W., J. Am. Chem. Soc. 2023, 145, 9584. - PubMed
-
- a) Lam T.‐L., Li H., Tan K., Chen Z., Tang Y.‐K., Yang J., Cheng G., Dai L., Che C.‐M., Small 2024, 20, 2307393; - PubMed
- b) Li K., Tong G. S. M., Wan Q., Cheng G., Tong W.‐Y., Ang W.‐H., Kwong W.‐L., Che C.‐M., Chem. Sci. 2016, 7, 1653; - PMC - PubMed
- c) Ryu C. H., Jo U., Shin I., Kim M., Cheong K., Bin J.‐K., Lee J. Y., Lee K. M., Adv. Optical Mater. 2024, 12, 2303109;
- d) Li G., Ameri L., Dorame B., Zhu Z.‐Q., Li J., Adv. Funct. Mater. 2024, 34, 212;
- e) Sun J., Ahn H., Kang S., Ko S.‐B., Song D., Um H. A., Kim S., Lee Y., Jeon P., Hwang S.‐H., You Y., Chu C., Kim S., Nat. Photonics 2022, 16, 212;
- f) Li H., Yi Y., Tan X., Dai L., Hung F.‐F., Cheng G., Tan K., Chen Z., Yang J., Zhou P., Shu X., Che C.‐M., J. Mater. Chem. C 2024, 12, 6035.
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous