Are AI-based surveillance systems for healthcare-associated infections ready for clinical practice? A systematic review and meta-analysis
- PMID: 40286586
- DOI: 10.1016/j.artmed.2025.103137
Are AI-based surveillance systems for healthcare-associated infections ready for clinical practice? A systematic review and meta-analysis
Abstract
Healthcare-associated infections (HAIs) are a global public health concern, imposing significant clinical and financial burdens. Despite advancements, surveillance methods remain largely manual and resource-intensive, often leading to underreporting. In this context, automation, particularly through Artificial Intelligence (AI), shows promise in optimizing clinical workflows. However, adoption challenges persist. This study aims to evaluate the current performance and impact of AI in HAI surveillance, considering technical, clinical, and implementation aspects. We conducted a systematic review of Scopus and Embase databases following PRISMA guidelines. AI-based models' performances, accuracy, AUC, sensitivity, and specificity, were pooled using a random-effect model, stratifying by detected HAI type. Our study protocol was registered in PROSPERO (CRD42024524497). Of 2834 identified citations, 249 studies were reviewed. The performances of AI models were generally high but with significant heterogeneity between HAI types. Overall pooled sensitivity, specificity, AUC, and accuracy were respectively 0.835, 0.899, 0.864, and 0.880. About 35.7 % of studies compared AI system performance with alternative automated or standard-of-care surveillance methods, with most achieving better or comparable results to clinical scores or manual surveillance. <7.6 % explicitly measured AI impact in terms of improved patient outcomes, workload reduction, and cost savings, with the majority finding benefits. Only 30 studies deployed the model in a user-friendly tool, and 9 tested it in real clinical practice. In this systematic review, AI shows promising performance in HAI surveillance, although its routine application in clinical practice remains uncommon. Despite over a decade, retrieved studies offer scant evidence on reducing burden, costs, and resource use. This prevents their potential superiority over traditional or simpler automated surveillance systems from being fully evaluated. Further research is necessary to assess impact, enhance interpretability, and ensure reproducibility.
Keywords: Artificial intelligence; Healthcare-associated infections; Infection control; Machine learning; Surveillance.
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Similar articles
-
Automated devices for identifying peripheral arterial disease in people with leg ulceration: an evidence synthesis and cost-effectiveness analysis.Health Technol Assess. 2024 Aug;28(37):1-158. doi: 10.3310/TWCG3912. Health Technol Assess. 2024. PMID: 39186036 Free PMC article.
-
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.Syst Rev. 2024 Nov 26;13(1):289. doi: 10.1186/s13643-024-02681-3. Syst Rev. 2024. PMID: 39593159 Free PMC article.
-
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.Health Technol Assess. 2001;5(32):1-195. doi: 10.3310/hta5320. Health Technol Assess. 2001. PMID: 12065068
-
Intravenous magnesium sulphate and sotalol for prevention of atrial fibrillation after coronary artery bypass surgery: a systematic review and economic evaluation.Health Technol Assess. 2008 Jun;12(28):iii-iv, ix-95. doi: 10.3310/hta12280. Health Technol Assess. 2008. PMID: 18547499
-
Home treatment for mental health problems: a systematic review.Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150. Health Technol Assess. 2001. PMID: 11532236
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources