Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jul:212:114727.
doi: 10.1016/j.ejpb.2025.114727. Epub 2025 Apr 24.

Exploring starch-based excipients in pharmaceutical formulations: Versatile applications and future perspectives

Affiliations
Review

Exploring starch-based excipients in pharmaceutical formulations: Versatile applications and future perspectives

Devesh U Kapoor et al. Eur J Pharm Biopharm. 2025 Jul.

Abstract

Starch, a naturally abundant and biocompatible polysaccharide, serves as a key excipient in pharmaceutical formulations, enhancing drug stability, efficacy, and manufacturability. This review explores the properties, modifications, and diverse applications of starch-based excipients. Native starches from corn, potato, rice, and wheat are commonly used as disintegrants, binders, and fillers. Physical (e.g., pre-gelatinization), chemical (e.g., cross-linking, acetylation), and enzymatic modifications improve their functionality, such as enhanced stability and colon-specific drug delivery. Starch excels as a binder, improving tablet cohesion and strength, and as a disintegrant, promoting rapid drug release. It also supports controlled and sustained-release systems and advanced drug delivery methods, like nanoparticles and microparticles. Compared to other natural and synthetic excipients, starch offers advantages in biodegradability, non-toxicity, and cost-effectiveness, despite challenges like stability and batch variability. Innovations such as starch nanocrystals show promise in boosting drug solubility and bioavailability. Looking ahead, starch-based excipients hold potential for sustainable pharmaceutical development, personalized medicine, and 3D printing.

Keywords: Binder; Controlled release; Disintegrant; Drug delivery; Hydrogel; Starch.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources