Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun 19;21(24):4792-4806.
doi: 10.1039/d4sm01527d.

Active and passive crosslinking of cytoskeleton scaffolds tune the effects of cell inclusions on composite structure

Affiliations

Active and passive crosslinking of cytoskeleton scaffolds tune the effects of cell inclusions on composite structure

Katarina Matic et al. Soft Matter. .

Abstract

Incorporating cells within active biomaterial scaffolds is a promising strategy to develop forefront materials that can autonomously sense, respond, and alter the scaffold in response to environmental cues or internal cell circuitry. Using dynamic biocompatible scaffolds that can self-alter their properties via crosslinking and motor-driven force-generation opens even greater avenues for actuation and control. However, the design principles associated with engineering active scaffolds embedded with cells are not well established. To address this challenge, we design a dynamic scaffold material of bacteria cells embedded within a composite cytoskeletal network of actin and microtubules that can be passively or actively crosslinked by either biotin-streptavidin or multimeric kinesin motors. Using quantitative microscopy, we demonstrate the ability to embed cells of volume fractions 0.4-2% throughout the network without compromising the structural integrity of the network or inhibiting crosslinking or motor-driven dynamics. Our findings suggest that both passive and active crosslinking promote entrainment of cells within the network, while depletion interactions play a more important role in uncrosslinked networks. Moreover, we show that large-scale structures emerge with the addition of cell fractions as low as 0.4%, but these structures do not influence the microscale structural length scale of the materials. Our work highlights the potential of our composite biomaterial in designing autonomous materials controlled by cells, and provides a roadmap for effectively coupling cells to complex composite materials with an eye towards using cells as in situ factories to program material modifications.

PubMed Disclaimer

LinkOut - more resources