Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr;28(4):e70127.
doi: 10.1111/ele.70127.

Extreme Drought Increases the Temporal Variability of Grassland Productivity by Suppressing Dominant Grasses

Affiliations

Extreme Drought Increases the Temporal Variability of Grassland Productivity by Suppressing Dominant Grasses

Wentao Luo et al. Ecol Lett. 2025 Apr.

Abstract

Extreme droughts are intensifying, yet their impact on temporal variability of grassland functioning and its drivers remains poorly understood. We imposed a 6-year extreme drought in two semiarid grasslands to explore how drought influences the temporal variability of ANPP and identify potential stabilising mechanisms. Drought decreased ANPP while increasing its temporal variability across grasslands. In the absence of drought, ANPP variability was strongly driven by the dominant plant species (i.e., mass-ratio effects), as captured by community-weighted traits and species stability. However, drought decreased the dominance of perennial grasses, providing opportunities for subordinate species to alter the stability of productivity through compensatory dynamics. Specifically, under drought, species asynchrony emerged as a more important correlate of ANPP variability than community-weighted traits or species stability. Our findings suggest that in grasslands, prolonged, extreme droughts may decrease the relative contribution of mass-ratio effects versus compensatory dynamics to productivity stability by reducing the influence of dominant species.

Keywords: compensatory dynamics; diversity–stability relationships; functional traits; global climate change; mass‐ratio effects; rainfall manipulation experiment.

PubMed Disclaimer