Aminoacyl-tRNA synthetase urzymes optimized by deep learning behave as a quasispecies
- PMID: 40290414
- PMCID: PMC12033045
- DOI: 10.1063/4.0000294
Aminoacyl-tRNA synthetase urzymes optimized by deep learning behave as a quasispecies
Abstract
Protein design plays a key role in our efforts to work out how genetic coding began. That effort entails urzymes. Urzymes are small, conserved excerpts from full-length aminoacyl-tRNA synthetases that remain active. Urzymes require design to connect disjoint pieces and repair naked nonpolar patches created by removing large domains. Rosetta allowed us to create the first urzymes, but those urzymes were only sparingly soluble. We could measure activity, but it was hard to concentrate those samples to levels required for structural biology. Here, we used the deep learning algorithms ProteinMPNN and AlphaFold2 to redesign a set of optimized LeuAC urzymes derived from leucyl-tRNA synthetase. We select a balanced, representative subset of eight variants for testing using principal component analysis. Most tested variants are much more soluble than the original LeuAC. They also span a range of catalytic proficiency and amino acid specificity. The data enable detailed statistical analyses of the sources of both solubility and specificity. In that way, we show how to begin to unwrap the elements of protein chemistry that were hidden within the neural networks. Deep learning networks have thus helped us surmount several vexing obstacles to further investigations into the nature of ancestral proteins. Finally, we discuss how the eight variants might resemble a sample drawn from a population similar to one subject to natural selection.
© 2025 Author(s).
Conflict of interest statement
The authors have no conflicts to disclose.
Figures










References
-
- Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A. J., Bambrick J., Bodenstein S. W., Evans D. A., Hung C.-C., O'Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A. I., Cowie A., Figurnov M., Fuchs F. B., Gladman H., Jain R., Khan Y. A., Low C. M. R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E. D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., and Jumper J. M., “Accurate structure prediction of biomolecular interactions with AlphaFold 3,” Nature 630, 493 (2024).10.1038/s41586-024-07487-w - DOI - PMC - PubMed
-
- Dauparas J., Anishchenko I., Bennett N., Bai H., Ragotte R. J., Milles L. F., Wicky B. I. M., Courbet A., de Haas R. J., Bethel N., Leung P. J. Y., Huddy T. F., Pellock S., Tischer D., Chan F., Koepnick B., Nguyen H., Kang A., Sankaran B., Bera A. K., King N. P., and Baker D., “Robust deep learning-based protein sequence design using ProteinMPNN,” Science 378, 49–56 (2022).10.1126/science.add2187 - DOI - PMC - PubMed
-
- Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S. A. A., Ballard A. J., Cowie A. T., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A. W., Kavukcuoglu K., Kohli P., and Hassabis D., “Highly accurate protein structure prediction with AlphaFold,” Nature 596, 583–592 (2021).10.1038/s41586-021-03819-2 - DOI - PMC - PubMed
LinkOut - more resources
Full Text Sources