Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985;59(2):282-95.
doi: 10.1007/BF00230908.

Reflex actions of muscle afferents on fusimotor innervation in decerebrated cats: an assessment of beta contributions

Reflex actions of muscle afferents on fusimotor innervation in decerebrated cats: an assessment of beta contributions

S E Grill et al. Exp Brain Res. 1985.

Abstract

The existence of beta innervation in many cat muscles raises the possibility that spindle afferent discharge will excite beta motoneurons, augmenting spindle afferent discharge and thereby closing a positive feedback loop. In order to evaluate the strength of such a loop through beta motoneurons and muscle spindles, the stretch responses of muscle spindle afferents from medial gastrocnemius (MG) and soleus (SOL) muscles were studied in decerebrated cats before and after dorsal root section. If a positive feedback loop were operational, the spindle afferent stretch response should be diminished following dorsal root section by an amount related to the magnitude of positive feedback. After dorsal root section, the static positional sensitivities of our MG spindle afferent sample were significantly reduced for 72% (13/18, p less than 0.05) of the afferents, and dynamic rate/length slopes were decreased for 88% (8/9) of a subset of the afferents studied. Similar reductions for 6 afferents from SOL were not found. To apportion these afferent changes to reflex excitation of either gamma or beta motoneurons, we recorded the stretch responses of gamma and alpha-type fibers in the same preparation. (We assume that the population of alpha-type fibers includes beta fibers). In keeping with other reports, alpha fibers were much more responsive to stretch than gamma fibers. The mean positional sensitivity for alpha fibers (1.29 +/- 0.92 pps/mm, n = 15) was greater (p less than 0.05) than that of gamma fibers (0.49 +/- 0.93 pps/mm, n = 18). Because of these differences in sensitivity, beta motoneurons are more likely (than gamma motoneurons) to be involved in a positive feedback loop, although some gamma contribution is also likely. Using equations based on a beta position regulating scheme, differences in spindle positional sensitivity were used to estimate beta loop gain. The average loop gain was estimated to be 0.41 (n = 18). The contribution of such a beta configuration to reducing the sensitivity of muscle to changes in load and muscle properties is evaluated.

PubMed Disclaimer

References

    1. Acta Physiol Scand. 1968 Sep-Oct;74(1):30-49 - PubMed
    1. Brain Res. 1979 Mar 23;164:53-9 - PubMed
    1. J Physiol. 1982 Apr;325:125-44 - PubMed
    1. Acta Physiol Scand. 1962 Aug;55:376-86 - PubMed
    1. J Physiol. 1982 Oct;331:481-98 - PubMed

Publication types

LinkOut - more resources