Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May 1;12(Pt 3):259-261.
doi: 10.1107/S2052252525003653.

Microcrystals in structural biology: small samples, big insights

Affiliations

Microcrystals in structural biology: small samples, big insights

Dominik Oberthür. IUCrJ. .

Abstract

Microcrystals are transforming structural biology by enabling high-resolution structures and time-resolved insights from samples once deemed too small. This commentary highlights recent advances in microfocus X-ray and MicroED methods, emphasizing their growing role as powerful and complementary tools in modern macromolecular crystallography.

Keywords: MicroED; macromolecular crystallography; microcrystals; serial crystallography; structural biology; time-resolved studies.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Microcrystals powering modern structure determination: from X-rays to electrons. Traditional macromolecular crystallography (MX) compared with serial crystallography at X-ray free-electron lasers (XFELs) and synchrotrons, and MicroED using a transmission electron microscope. Traditional MX relies on single, cryo-cooled crystals of ~20–500 µm diameter, typically rotated through ~180° with exposures of 0.1–1°. In contrast, serial crystallography uses thousands of microcrystals (typically 0.2–50 µm), delivered at room temperature in random orientations, with each crystal exposed only once to a focused X-ray pulse. MicroED involves electron diffraction from cryo-cooled nanocrystals (typically 0.05–0.5 µm) mounted on a tilted EM grid, typically collecting ±10° of data per crystal. (Image created with BioRender, https://www.biorender.com.)

Similar articles

References

    1. Berger, C., Premaraj, N., Ravelli, R. B. G., Knoops, K., López-Iglesias, C. & Peters, P. J. (2023). Nat. Methods, 20, 499–511. - PubMed
    1. Caramello, N. & Royant, A. (2024). Acta Cryst. D80, 60–79. - PMC - PubMed
    1. Chapman, H. N., Fromme, P., Barty, A., White, T. A., Kirian, R. A., Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U., Doak, R. B., Maia, F. R. N. C., Martin, A. V., Schlichting, I., Lomb, L., Coppola, N., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles, D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G., Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan, M. J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner, D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kühnel, K.-U., Messerschmidt, M., Bozek, J. D., Hau-Riege, S. P., Frank, M., Hampton, C. Y., Sierra, R. G., Starodub, D., Williams, G. J., Hajdu, J., Timneanu, N., Seibert, M. M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schröter, C.-D., Krasniqi, F., Bott, M., Schmidt, K. E., Wang, X., Grotjohann, I., Holton, J. M., Barends, T. R. M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B. & Spence, J. C. H. (2011). Nature, 470, 73–77.
    1. Chayen, N. E. & Saridakis, E. (2008). Nat. Methods, 5, 147–153. - PubMed
    1. Henkel, A. & Oberthür, D. (2024). Acta Cryst. D80, 563–579. - PMC - PubMed

Substances

LinkOut - more resources