Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Oct 15:339:126285.
doi: 10.1016/j.saa.2025.126285. Epub 2025 Apr 23.

Emerging biomedical applications of surface-enhanced Raman spectroscopy integrated with artificial intelligence and microfluidic technologies

Affiliations
Review

Emerging biomedical applications of surface-enhanced Raman spectroscopy integrated with artificial intelligence and microfluidic technologies

Zehra Tas et al. Spectrochim Acta A Mol Biomol Spectrosc. .

Abstract

The integration of surface-enhanced Raman spectroscopy (SERS), artificial intelligence (AI), and microfluidics represent a transformative approach for biomedical applications. By combining the molecular sensitivity of SERS, AI-driven spectral analysis, and the precise sample handling of microfluidics, these novel integrated systems enable ultrasensitive, label-free diagnostics with minimal sample processing. The development of portable, cost-effective platforms could democratize advanced diagnostics for resource-limited settings. However, challenges such as reproducibility, clinical validation, and system integration hinder widespread adoption. This review explores these new integrated platforms, beginning with a discussion of SERS principles, their biomedical applications, and the critical roles of AI and microfluidics in enhancing analytical performance. We evaluate recent advances in the application of these integrated systems, while addressing key challenges such as substrate scalability, biocompatibility, and point-of-care translation, with a focus on nanomaterials, AI models, and lab-on-chip designs. Finally, we outline future directions, including multimodal sensing, sustainable materials, and embedded AI for real-time diagnostics, to bridge the gap between technological innovation and clinical implementation.

Keywords: Artificial intelligence; Biomedical applications; Deep learning; Machine learning; Microfluidic technologies; Surface-Enhanced Raman Spectroscopy.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

MeSH terms

LinkOut - more resources