Trojan Horse-Like Vehicles for CRISPR-Cas Delivery: Engineering Extracellular Vesicles and Virus-Like Particles for Precision Gene Editing in Cystic Fibrosis
- PMID: 40295092
- DOI: 10.1089/hum.2024.258
Trojan Horse-Like Vehicles for CRISPR-Cas Delivery: Engineering Extracellular Vesicles and Virus-Like Particles for Precision Gene Editing in Cystic Fibrosis
Abstract
The advent of genome editing has kindled the hope to cure previously uncurable, life-threatening genetic diseases. However, whether this promise can be ultimately fulfilled depends on how efficiently gene editing agents can be delivered to therapeutically relevant cells. Over time, viruses have evolved into sophisticated, versatile, and biocompatible nanomachines that can be engineered to shuttle payloads to specific cell types. Despite the advances in safety and selectivity, the long-term expression of gene editing agents sustained by viral vectors remains a cause for concern. Cell-derived vesicles (CDVs) are gaining traction as elegant alternatives. CDVs encompass extracellular vesicles (EVs), a diverse set of intrinsically biocompatible and low-immunogenic membranous nanoparticles, and virus-like particles (VLPs), bioparticles with virus-like scaffold and envelope structures, but devoid of genetic material. Both EVs and VLPs can efficiently deliver ribonucleoprotein cargo to the target cell cytoplasm, ensuring that the editing machinery is only transiently active in the cell and thereby increasing its safety. In this review, we explore the natural diversity of CDVs and their potential as delivery vectors for the clustered regularly interspaced short palindromic repeats (CRISPR) machinery. We illustrate different strategies for the optimization of CDV cargo loading and retargeting, highlighting the versatility and tunability of these vehicles. Nonetheless, the lack of robust and standardized protocols for CDV production, purification, and quality assessment still hinders their widespread adoption to further CRISPR-based therapies as advanced "living drugs." We believe that a collective, multifaceted effort is urgently needed to address these critical issues and unlock the full potential of genome-editing technologies to yield safe, easy-to-manufacture, and pharmacologically well-defined therapies. Finally, we discuss the current clinical landscape of lung-directed gene therapies for cystic fibrosis and explore how CDVs could drive significant breakthroughs in in vivo gene editing for this disease.
Keywords: CRISPR-Cas gene editing; extracellular vesicles; in vivo CRISPR delivery; lung-targeted delivery; vector manufacturing and quality control; virus-like particles.
Similar articles
-
Modulating binding affinity of aptamer-based loading constructs enhances extracellular vesicle-mediated CRISPR/Cas9 delivery.J Control Release. 2025 Aug 10;384:113853. doi: 10.1016/j.jconrel.2025.113853. Epub 2025 May 18. J Control Release. 2025. PMID: 40393529
-
Applying CRISPR Technologies for the Treatment of Human Herpesvirus Infections: A Scoping Review.Pathogens. 2025 Jul 1;14(7):654. doi: 10.3390/pathogens14070654. Pathogens. 2025. PMID: 40732701 Free PMC article. Review.
-
CRISPR editing of candidate host factors that impact influenza A virus infection.Microbiol Spectr. 2025 Mar 4;13(3):e0262724. doi: 10.1128/spectrum.02627-24. Epub 2025 Jan 31. Microbiol Spectr. 2025. PMID: 39887213 Free PMC article.
-
Nanotechnology-Based Delivery of CRISPR/Cas9 for Cancer Treatment: A Comprehensive Review.Cells. 2025 Jul 23;14(15):1136. doi: 10.3390/cells14151136. Cells. 2025. PMID: 40801569 Free PMC article. Review.
-
Cell-Penetrating Peptides and CRISPR-Cas9: A Combined Strategy for Human Genetic Disease Therapy.Hum Gene Ther. 2024 Oct;35(19-20):781-797. doi: 10.1089/hum.2024.020. Hum Gene Ther. 2024. PMID: 39276086 Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical