Efficacy of Endophytic Bacterium Serratia marcescens B.SB 1.1 associated with Sea Fern (Acrostichum aureum L.) as an Antidiabetic Agent
- PMID: 40295205
- PMCID: PMC12089956
- DOI: 10.4014/jmb.2412.12031
Efficacy of Endophytic Bacterium Serratia marcescens B.SB 1.1 associated with Sea Fern (Acrostichum aureum L.) as an Antidiabetic Agent
Abstract
Diabetes mellitus (DM) is a primary global health concern, often progressing unnoticed until complications arise. Current antidiabetic therapies primarily aim to inhibit the α-amylase enzyme, thereby reducing blood glucose levels. Some medicinal plants are proven to be symbiotic with endophytic bacteria that produce bioactive compounds capable of inhibiting α-amylase activity. This study investigated the potential of endophytic bacteria isolated from the stem of the sea fern (Acrostichum aureum L.) to act as α-amylase inhibitors, using both in vitro and in silico studies. Phytochemical analysis of both the stem extract and cultured bacterial isolates showed the presence of alkaloids, flavonoids, and saponins. Isolate B.SB 1.1 was identified as Serratia marcescens based on 16S rRNA sequencing. The α-amylase inhibition assay demonstrated the strain as showing significant inhibitory activity, with 32.57% inhibition at 2% starch substrate concentration. In silico docking studies using LC-MS data predicted 4-propylbiphenyl and benzoin as compounds with the lowest binding energy to α-amylase, suggesting their potential as effective inhibitors. These findings highlight the efficacy and therapeutic potential of endophytic strain S. marcescens B.SB 1.1 as a novel antidiabetic agent.
Keywords: Acrostichum aureum L.; endophytic bacteria; phytochemicals; α-amylase inhibitors.
Conflict of interest statement
The authors have no financial conflicts of interest to declare.
Figures
References
-
- Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019;157:107843. doi: 10.1016/j.diabres.2019.107843. - DOI - PubMed
-
- Patel H, Royall PG, Gaisford S, Williams GR, Edwards CH, Warren FJ, et al. Structural and enzyme kinetic studies of retrograded starch: inhibition of α-amylase and consequences for intestinal digestion of starch. Carbohydr. Polym. 2017;15:154–161. doi: 10.1016/j.carbpol.2017.01.040. - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
