Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May;66(3):204-215.
doi: 10.1080/03008207.2025.2496832. Epub 2025 Apr 29.

Bone marrow mesenchymal stem cells (BMSCs)-derived exosomal METTL3 regulates the m6A methylation of SMAD5 to promote osteogenic differentiation of osteoblasts

Affiliations

Bone marrow mesenchymal stem cells (BMSCs)-derived exosomal METTL3 regulates the m6A methylation of SMAD5 to promote osteogenic differentiation of osteoblasts

Zhenhua Li et al. Connect Tissue Res. 2025 May.

Abstract

Background: Methyltransferase-like 3 (METTL3) is implicated in human diseases, including osteoporosis (OP). In this study, we aimed to explore the functions and mechanisms of METTL3 in OP using bone marrow mesenchymal stem cells (BMSCs).

Methods: The identification of BMSCs-derived exosomes was conducted by transmission electron microscope (TEM), Nanoparticle Tracking Analysis (NTA) and western blot. The osteogenic differentiation of osteoblasts (hFOB1.19) was analyzed by Alizarin red staining assay, Alkaline phosphatase (ALP) staining assay and western blot. The relationship between METTL3 and SMAD family member 5 (SMAD5) was analyzed by Methylated RNA Immunoprecipitation (MeRIP) assay and dual-luciferase reporter assay.

Results: BMSCs-derived exosomes (BMSC-Exos) promoted the osteogenic differentiation and elevated METTL3 expression in hFOB1.19 cells. Exosomal METTL3 knockdown repressed the osteogenic differentiation in hFOB1.19 cells. METTL3 could stabilize and regulate SMAD5 expression by N6-methyladenosine (m6A) modification. Moreover, SMAD5 overexpression restored exosomal METTL3 knockdown-mediated effect on the osteogenic differentiation in hFOB1.19 cells.

Conclusion: BMSCs-derived exosomal METTL3 mediated the m6A methylation of SMAD5 to facilitate osteogenic differentiation of hFOB1.19 cells.

Keywords: Exosome; METTL3; Osteoporosis; SMAD5; m6A.

PubMed Disclaimer

Similar articles

LinkOut - more resources