Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May 9;27(18):4782-4787.
doi: 10.1021/acs.orglett.5c01266. Epub 2025 Apr 30.

Quinol-Enedione Rearrangement

Affiliations

Quinol-Enedione Rearrangement

Tomás Vieira de Castro et al. Org Lett. .

Abstract

The quinol-enedione rearrangement enables the synthesis of 2-cyclohexene-1,4-diones from readily available para-quinol substrates. Building on sporadic early reports of this transformation, we have optimized the reaction conditions and systematically investigated its substrate scope. The utility of Brønsted acid-mediated reaction conditions for a variety of quinol derivatives, including those with substituted and unsubstituted migrating termini, is highlighted. Notably, kinetic selectivity between quinol-enedione and dienone-phenol rearrangements is demonstrated. The synthetic potential of the enedione products is showcased through a range of transformations, leading to the formation of complex polycyclic structures. These findings provide a valuable framework for recognizing and applying the quinol-enedione rearrangement in synthesis, while computational studies offer valuable insights into its mechanistic underpinnings.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Dienone–Phenol and Quinol–Enedione Rearrangements, Shown Proceeding via Brønsted Acid Catalyzed Mechanisms
Scheme 2
Scheme 2. Davis’ Seminal Quinol–Enedione Rearrangement and Representative Natural Products That Contain the Enedione Framework
Scheme 3
Scheme 3. Substrate Scope for the Quinol−Enedione Rearrangement
Scheme 4
Scheme 4. Investigating Selectivity between Quinol–Enedione and Dienone–Phenol Rearrangements
1.0 equiv of p-TsOH used.
Scheme 5
Scheme 5. Failed Substrates for the Quinol–Enedione Rearrangement
Scheme 6
Scheme 6. Derivatization Studies on Model Enedione 2a
23% yield of the diketone formed from hydrolysis of enol acetate 15 was also isolated.

Similar articles

Cited by

References

    1. Andreocci A. About two new isomers of santonin and santonin acid. Gazz. Chim. Ital. 1893, 23, 468–476.
    2. Auwers K. V.; Ziegler K. Hydrocarbons of the Semibenzene Group. Justus Liebigs Ann. Chem. 1921, 425, 217–280. 10.1002/jlac.19214250302. - DOI
    3. Clemo G. R.; Haworth R. D.; Walton E. Constitution of santonin. II. Synthesis of racemic desmotroposantonin. J. Chem. Soc. 1930, 1110–1115. 10.1039/JR9300001110. - DOI
    4. Wilds A. L.; Djerassi C. Dienone-phenol rearrangement applied to chrysene derivatives. The synthesis of 3-hydroxy-1-methylchrysene and related compounds. J. Am. Chem. Soc. 1946, 68, 1715–1719. 10.1021/ja01213a010. - DOI - PubMed
    1. For a useful overview, see: Kurti L.; Czako B.. Dienone–Phenol Rearrangement. In Strategic Applications of Named Reactions in Organic Synthesis; Kurti L., Czako B., Eds.; Elsevier Academic Press, 2005; pp 142–143.
    2. For specific examples, see:

    3. Hart D. J.; Kim A.; Krishnamurthy R.; Merriman G. H.; Waltos A. M. Synthesis of 6H-dibenzo[b,d]pyran-6-ones via dienone-phenol rearrangements of spiro[2,5-cyclohexadiene-1,1’(3′H)-isobenzofuran]-3′-ones. Tetrahedron 1992, 48, 8179–8188. 10.1016/S0040-4020(01)80487-7. - DOI
    4. Parker K. A.; Koh Y. -h. Methodology for the Regiospecific Synthesis of Bis C-Aryl Glycosides. Models for Kidamycins. J. Am. Chem. Soc. 1994, 116, 11149–11150. 10.1021/ja00103a037. - DOI
    5. Guo Z.; Schultz A. G. Preparation and Photochemical Rearrangements of 2-Phenyl-2,5-cyclohexadien-1-ones. An Efficient Route to Highly Substituted Phenols. Org. Lett. 2001, 3, 1177–1180. 10.1021/ol015637h. - DOI - PubMed
    1. Davis B. R.; Woodgate P. D. Dienone–Phenol Type Rearrangements. Part III. para-Quinols. J. Chem. Soc. C 1968, 0, 712–715. 10.1039/J39680000712. - DOI
    1. Burkinshaw G. F.; Davis B. R.; Woodgate P. D.; Hodges R. The Isolation of a Spiran in the Acid-catalysed Rearrangement of a Bicyclic Cyclohexadienone. Chem. Commun. 1968, 528.10.1039/c19680000528. - DOI
    2. Burkinshaw G. F.; Davis B. R.; Hutchinson E. G.; Woodgate P. D.; Hodges R. The synthesis and acid-catalysed rearrangements of 4-hydroxycyclohexa-2,5-dienones. J. Chem. Soc. C 1971, 3002–3006. 10.1039/j39710003002. - DOI
    3. Berger S.; Henes G.; Rieker A.; et al. Baseninduzierte Acyloin-Umlagerung sterisch gehinderter p-Chinole. Chem. Ber. 1976, 109, 1530–1548. 10.1002/cber.19761090439. - DOI
    4. Planas A.; Tomás J.; Bonet J.-J. Spiran isolation in the dienone-phenol rearrangement of steroidal p-quinols. Tetrahedron Lett. 1987, 28, 471–474. 10.1016/S0040-4039(00)95759-9. - DOI
    5. Uno H.; Yayama A.; Suzuki H. 1,2-Migration of Perfluoroalkyl Groups in Anionotropic Rearrangement. The Acyloin Rearrangement of 4-Perfluoroalkyl-4-quinols. Chem. Lett. 1991, 20, 1165–1168. 10.1246/cl.1991.1165. - DOI
    6. Uno H.; Yayama A.; Suzuki H. Perfluoroalkyl Migration in the Rearrangement of 4-Perfluoroalkyl-4-quinols. Tetrahedron 1992, 48, 8353–8368. 10.1016/S0040-4020(01)86584-4. - DOI
    1. Hu P.; Chi H. M.; DeBacker K. C.; Gong X.; Keim J. H.; Hsu I. T.; Snyder S. A. Quaternary-centre-guided synthesis of complex polycyclic terpenes. Nature 2019, 569, 703–707. 10.1038/s41586-019-1179-2. - DOI - PMC - PubMed

LinkOut - more resources