Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Editorial
. 2025 Apr 30:14:e106854.
doi: 10.7554/eLife.106854.

With a little help from T cells

Affiliations
Editorial

With a little help from T cells

Troy Burtchett et al. Elife. .

Abstract

Specific host factors, such as immune cell activity, sex hormones and microbiota composition, influence the ability of Staphylococcus aureus bacteria to colonize the gut of mice.

Keywords: MRSA; Th17; gastrointestinal colonization; immunology; inflammation; microbiota; mouse; sex hormone.

PubMed Disclaimer

Conflict of interest statement

TB, NH No competing interests declared

Figures

Figure 1.
Figure 1.. MRSA colonization in the gut of mice is microbiota- and sex-dependent.
The gut microbiota of female and male mice bred at New York University (NYU) or Jackson Laboratories (JAX) influences the ability of MRSA bacteria to colonize the gut. The gut microbiota of NYU female mice (left panel) differs from NYU male mice (middle panel) and both male and female JAX mice (right panel). This difference provided NYU females with unique protection against MRSA colonization (microbiota effect). The immune response of NYU females after they were infected with MRSA resulted in increased counts of T-helper 17 (Th17) cells (green) and activated neutrophils (pink), which promoted clearance of MRSA (immune response effect; bottom panel). Th17 cell proliferation and neutrophil activation were not observed in NYU male mice, resulting in persistent colonization with MRSA.

Comment on

  • doi: 10.7554/eLife.101606

References

    1. Caballero-Flores G, Pickard JM, Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nature Reviews Microbiology. 2023;21:347–360. doi: 10.1038/s41579-022-00833-7. - DOI - PMC - PubMed
    1. Castleman MJ, Pokhrel S, Triplett KD, Kusewitt DF, Elmore BO, Joyner JA, Femling JK, Sharma G, Hathaway HJ, Prossnitz ER, Hall PR. Innate sex bias of Staphylococcus aureus skin infection is driven by α-hemolysin. Journal of Immunology. 2018;200:657–668. doi: 10.4049/jimmunol.1700810. - DOI - PMC - PubMed
    1. Humphreys H, Fitzpatick F, Harvey BJ. Gender differences in rates of carriage and bloodstream infection caused by methicillin-resistant Staphylococcus aureus: are they real, do they matter and why? Clinical Infectious Diseases. 2015;61:1708–1714. doi: 10.1093/cid/civ576. - DOI - PubMed
    1. Lejeune A, Zhou C, Ercelen D, Putzel G, Yao X, Guy AR, Pawline M, Podkowik M, Pironti A, Torres VJ, Shopsin B, Cadwell K. Sex-dependent gastrointestinal colonization resistance to MRSA is microbiota and Th17 dependent. eLife. 2024;13:RP101606. doi: 10.7554/eLife.101606. - DOI - PMC - PubMed
    1. Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, Han C, Bisignano C, Rao P, Wool E, Johnson SC, Browne AJ, Chipeta MG, Fell F, Hackett S, Haines-Woodhouse G, Kashef Hamadani BH, Kumaran EAP, McManigal B, Achalapong S, Agarwal R, Akech S, Albertson S, Amuasi J, Andrews J, Aravkin A, Ashley E, Babin F-X, Bailey F, Baker S, Basnyat B, Bekker A, Bender R, Berkley JA, Bethou A, Bielicki J, Boonkasidecha S, Bukosia J, Carvalheiro C, Castañeda-Orjuela C, Chansamouth V, Chaurasia S, Chiurchiù S, Chowdhury F, Clotaire Donatien R, Cook AJ, Cooper B, Cressey TR, Criollo-Mora E, Cunningham M, Darboe S, Day NPJ, De Luca M, Dokova K, Dramowski A, Dunachie SJ, Duong Bich T, Eckmanns T, Eibach D, Emami A, Feasey N, Fisher-Pearson N, Forrest K, Garcia C, Garrett D, Gastmeier P, Giref AZ, Greer RC, Gupta V, Haller S, Haselbeck A, Hay SI, Holm M, Hopkins S, Hsia Y, Iregbu KC, Jacobs J, Jarovsky D, Javanmardi F, Jenney AWJ, Khorana M, Khusuwan S, Kissoon N, Kobeissi E, Kostyanev T, Krapp F, Krumkamp R, Kumar A, Kyu HH, Lim C, Lim K, Limmathurotsakul D, Loftus MJ, Lunn M, Ma J, Manoharan A, Marks F, May J, Mayxay M, Mturi N, Munera-Huertas T, Musicha P, Musila LA, Mussi-Pinhata MM, Naidu RN, Nakamura T, Nanavati R, Nangia S, Newton P, Ngoun C, Novotney A, Nwakanma D, Obiero CW, Ochoa TJ, Olivas-Martinez A, Olliaro P, Ooko E, Ortiz-Brizuela E, Ounchanum P, Pak GD, Paredes JL, Peleg AY, Perrone C, Phe T, Phommasone K, Plakkal N, Ponce-de-Leon A, Raad M, Ramdin T, Rattanavong S, Riddell A, Roberts T, Robotham JV, Roca A, Rosenthal VD, Rudd KE, Russell N, Sader HS, Saengchan W, Schnall J, Scott JAG, Seekaew S, Sharland M, Shivamallappa M, Sifuentes-Osornio J, Simpson AJ, Steenkeste N, Stewardson AJ, Stoeva T, Tasak N, Thaiprakong A, Thwaites G, Tigoi C, Turner C, Turner P, van Doorn HR, Velaphi S, Vongpradith A, Vongsouvath M, Vu H, Walsh T, Walson JL, Waner S, Wangrangsimakul T, Wannapinij P, Wozniak T, Young Sharma TEMW, Yu KC, Zheng P, Sartorius B, Lopez AD, Stergachis A, Moore C, Dolecek C, Naghavi M. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022;399:629–655. doi: 10.1016/S0140-6736(21)02724-0. - DOI - PMC - PubMed

Publication types

LinkOut - more resources