Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Apr;18(1):73-86.
doi: 10.1016/0378-5955(85)90111-x.

Neurons in the cat's primary auditory cortex distinguished by their responses to tones and wide-spectrum noise

Neurons in the cat's primary auditory cortex distinguished by their responses to tones and wide-spectrum noise

D P Phillips et al. Hear Res. 1985 Apr.

Abstract

In the cortex of barbiturate-anesthetized cats, area AI was identified by its tonotopic organization, and single neurons in that field were examined with regard to the shapes of their spike count-versus-intensity functions, the organization of their frequency-intensity response areas, and their responses to wide-spectrum noise, using calibrated sealed stimulating systems. Neurons whose pure tone rate intensity functions were monotonic in shape displayed V-shaped response areas that were open-ended at high tone intensities. In contrast, cells displaying nonmonotonic tone intensity functions tended to have circumscribed response areas; these cells were responsive to tones over limited ranges of both frequency and intensity. Monotonic neurons almost always responded to wide-spectrum noise stimuli, while nonmonotonic neurons often did not. The mean minimum latent period of monotonic cells (14.0 ms) was significantly shorter than that for nonmonotonic neurons (19.1 ms). For those cells that responded to both tones and noise, minimum latent periods for the two stimuli were similar or identical. Monotonic neurons tended to be horizontally segregated from nonmonotonic neurons across AI's middle cortical layers. The implications of these data for the nature of some neural mechanisms underlying the stimulus selectivity of cortical cells are discussed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources