Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Aug;59(2):623-33.
doi: 10.1152/jappl.1985.59.2.623.

Photographic measurement of pleural surface motion during lung oscillation

Photographic measurement of pleural surface motion during lung oscillation

J L Lehr et al. J Appl Physiol (1985). 1985 Aug.

Abstract

The regional pleural surface expansion of an excised dog lung was measured during high-frequency ventilation (HFV) using synchronized stroboscopic photography to stop lung motion at 20 evenly spaced intervals over a respiratory cycle during ventilation at 1 Hz with a volume of 100 ml, 15 Hz with 100 ml, or 30 Hz with 50 ml. The lungs were also photographed during quasi-static deflation. The pleural surface was marked with ink dots to form 84 approximately square figures. The side lengths and areas of each of the 84 "squares" were measured for each frame of each photo sequence. At 1 Hz and during the quasi-static deflation the lung ventilated nearly synchronously, although minor nonuniformities were noted on both small and large length scales. At 15 and 30 Hz, the lung expanded asynchronously and nonuniformly, with a 78% increase in surface expansion per 100 ml of tracheal tidal volume, as frequency was increased from 1 to 30 Hz. These nonuniformities in expansion suggest marked interregional airflow and elastic wave propagation in the parenchyma during HFV.

PubMed Disclaimer

Publication types

LinkOut - more resources