Cancer mRNA vaccines: clinical application progress and challenges
- PMID: 40306545
- DOI: 10.1016/j.canlet.2025.217752
Cancer mRNA vaccines: clinical application progress and challenges
Abstract
Messenger RNA (mRNA) vaccines have emerged as one of the most promising and rapidly evolving immunotherapeutic approaches due to their ease of production, demonstrated clinical efficacy, and high safety. The coronavirus disease 2019(COVID-19) pandemic has showcased the remarkable therapeutic potential of mRNA vaccines, prompting researchers to explore their use for cancer treatment. Preclinical studies and human clinical trials have indicated their substantial clinical applicability. However, current research faces several challenges, including the complexity of tumor antigen selection, vaccine stability, and the development of resistance. This review summarizes the optimization strategies for cancer mRNA vaccines in preclinical settings, the progress of clinical trials, and the challenges encountered while analyzing various delivery vehicle types, infusion methods, and application cases across different cancer types, highlighting key factors in vaccine design. The findings demonstrate that mRNA vaccines elicit specific immune responses and exhibit favorable safety and tolerability in clinical trials. Moreover, developing personalized neoantigen vaccines offers a novel direction for cancer immunotherapy. The unique contribution of this review lies in its comprehensive overview of the latest advancements in therapeutic mRNA vaccines for cancer treatment while identifying critical areas for future research to propel the field forward.
Keywords: Cancer immunotherapy; Combination therapy; Personalized vaccines; RNA vaccines.
Copyright © 2025 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
