Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May:139:104328.
doi: 10.1016/j.medengphy.2025.104328. Epub 2025 Mar 24.

Automated ADHD detection using dual-modal sensory data and machine learning

Affiliations

Automated ADHD detection using dual-modal sensory data and machine learning

Yanqing Ji et al. Med Eng Phys. 2025 May.

Abstract

This study explores using dual-modal sensory data and machine learning to objectively identify Attention-Deficit/Hyperactivity Disorder (ADHD), a neurodevelopmental disorder traditionally diagnosed through subjective clinical evaluations. Six machine learning algorithms, including Logistic Regression (LR), Random Forest (RF), XGBoost (XGB), LightGBM (LGBM), Neural Network (NN), and Support Vector Machine (SVM), were evaluated using both activity and heart rate variability (HRV) data collected from 103 participants. The results show that both activity and HRV data performed similarly when analyzed individually. However, when the two datasets were combined, the highest F1-score increased by 12 % compared to the activity data and 23 % compared to the HRV data. This combination leverages the complementary strengths of both data, representing a key contribution of our work. With the combined data, the SVM model performed best, achieving an F1-Score of 0.87 and a Matthews Correlation Coefficient of 0.77. This study highlights the significant potential of interdisciplinary collaboration and the use of diverse data sources to advance ADHD detection through cutting-edge machine learning techniques.

Keywords: ADHD detection; Attention-Deficit/Hyperactivity Disorder (ADHD); HRV and activity data; Machine learning.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources