Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 24;16(21):9406-9412.
doi: 10.1039/d5sc01576f. eCollection 2025 May 28.

Post-coordination of Ru(ii) controlled regioselective B(4)-H acylmethylation of o-carboranes with sulfoxonium ylides

Affiliations

Post-coordination of Ru(ii) controlled regioselective B(4)-H acylmethylation of o-carboranes with sulfoxonium ylides

Hou-Ji Cao et al. Chem Sci. .

Abstract

Despite significant progress in the B-H functionalization of carboranes, the development of cost-effective catalytic systems devoid of noble metals, coupled with mechanistic validation of regioselectivity control, remains a formidable challenge. Herein, we disclose an Ag salt-free, redox-neutral, and inexpensive ruthenium(ii)-catalyzed protocol that enables exclusive B(4)-H acylmethylation of o-carboranes through a novel post-coordination strategy. By exploiting weakly coordinating carboxylic acid as a traceless directing group, this method achieves excellent mono-site selectivity for B-C(sp3) bond formation using diverse sulfoxonium ylides, demonstrating both functional group tolerance and synthetic scalability. This work not only establishes a practical synthetic platform but also addresses critical mechanistic questions unresolved in prior analogous studies. Through deuterium labeling, in situ high-resolution mass spectrometry (HRMS) tracking, and single-crystal X-ray analysis of critical Ru intermediates, we unequivocally demonstrate that the mono-site selectivity originates from a unique post-coordination mode of Ru(ii). The Ru catalyst simultaneously engages both the carboxylic acid and the enolizable acylmethyl moiety in the mono-acylated intermediate, thereby dictating the B(4)-H activation trajectory. Our findings establish a generalizable platform for regiocontrolled carborane functionalization while defining mechanistic paradigms in transition metal-mediated B-H activation chemistry.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Transition metal-catalyzed cage B–H alkylation of o-carboranes.
Scheme 2
Scheme 2. Scope of sulfoxonium ylides. aReaction conditions: 1a (0.1 mmol), 2 (1.5 equiv.), [Ru(benzene)Cl2]2 (2.5 mol%), HFIP (1.0 mL), 60 °C, 3 h, N2 atmosphere. bIsolated yield. c1 mmol scale. d2J was used as a racemic mixture. eNo d.r. was determined. fEnantiopure 2K was used.
Scheme 3
Scheme 3. Scope of carboranyl acids. Reaction conditions: 1 (0.1 mmol), 2a (1.5 equiv.), [Ru(benzene)Cl2]2 (2.5 mol%), HFIP (1.0 mL), 60 °C, 3 h, N2 atmosphere. bIsolated yield.
Scheme 4
Scheme 4. Synthetic applications.
Scheme 5
Scheme 5. Control experiments.
Scheme 6
Scheme 6. Proposed reaction cycle for Ru(ii)-catalyzed B(4)–H alkylation of o-carboranyl acid (a) and illustration of the post-coordination step (b).

Similar articles

References

    1. Hosmane N. S. and Eagling R., Handbook of Boron Science, World Scientific, 2019
    2. Poater J. Viñas C. Solà M. Teixidor F. Nat. Commun. 2022;13:3844. doi: 10.1038/s41467-022-31267-7. - DOI - PMC - PubMed
    3. King R. B. Chem. Rev. 2001;101:1119–1152. doi: 10.1021/cr000442t. - DOI - PubMed
    1. Grimes R. N., Carboranes, Academic Press, 2016
    2. Poater J. Viñas C. Bennour I. Escayola S. Solà M. Teixidor F. J. Am. Chem. Soc. 2020;142:9396–9407. doi: 10.1021/jacs.0c02228. - DOI - PubMed
    1. Marfavi A. Kavianpour P. Rendina L. M. Nat. Rev. Chem. 2022;6:486–504. doi: 10.1038/s41570-022-00400-x. - DOI - PubMed
    2. Scholz M. Hey-Hawkins E. Chem. Rev. 2011;111:7035–7062. - PubMed
    3. Issa F. Kassiou M. Rendina L. M. Chem. Rev. 2011;111:5701–5722. doi: 10.1021/cr2000866. - DOI - PubMed
    4. Grams R. J. Santos W. L. Scorei I. R. Abad-García A. Rosenblum C. A. Bita A. Cerecetto H. Viñas C. Soriano-Ursúa M. A. Chem. Rev. 2024;124:2441–2511. doi: 10.1021/acs.chemrev.3c00663. - DOI - PubMed
    1. Han Y.-F. Jin G.-X. Acc. Chem. Res. 2014;47:3571–3579. doi: 10.1021/ar500335a. - DOI - PubMed
    2. Popescu A. R. Teixidor F. Viñas C. Coord. Chem. Rev. 2014;269:54–84. doi: 10.1016/j.ccr.2014.02.016. - DOI
    3. Cui P.-F. Liu X.-R. Jin G.-X. J. Am. Chem. Soc. 2023;145:19440–19457. doi: 10.1021/jacs.3c05563. - DOI - PubMed
    1. Núñez R. Tarrés M. Ferrer-Ugalde A. de Biani F. F. Teixidor F. Chem. Rev. 2016;116:14307–14378. doi: 10.1021/acs.chemrev.6b00198. - DOI - PubMed
    2. Ochi J. Tanaka K. Chujo Y. Angew. Chem., Int. Ed. 2020;59:9841–9855. doi: 10.1002/anie.201916666. - DOI - PubMed
    3. Yuhara K. Tanaka K. Angew. Chem., Int. Ed. 2024;63:e202319712. - PubMed
    4. Wei X. Zhu M.-J. Cheng Z. Lee M. Yan H. Lu C. Xu J.-J. Angew. Chem., Int. Ed. 2019;58:3162–3166. doi: 10.1002/anie.201900283. - DOI - PubMed
    5. Tanaka K. Gon M. Ito S. Ochi J. Chujo Y. Coord. Chem. Rev. 2022;472:214779. doi: 10.1016/j.ccr.2022.214779. - DOI
    6. Liu K. Zhang J. Shi Q. Ding L. Liu T. Fang Y. J. Am. Chem. Soc. 2023;145:7408–7415. doi: 10.1021/jacs.2c13843. - DOI - PubMed
    7. Tu D. Leong P. Guo S. Yan H. Lu C. Zhao Q. Angew. Chem., Int. Ed. 2017;56:11370–11374. doi: 10.1002/anie.201703862. - DOI - PubMed
    8. Axtell J. C. Kirlikovali K. O. Djurovich P. I. Jung D. Nguyen V. T. Munekiyo B. Royappa A. T. Rheingold A. L. Spokoyny A. M. J. Am. Chem. Soc. 2016;138:15758–15765. doi: 10.1021/jacs.6b10232. - DOI - PubMed
    9. Lee Y. H. Park J. Lee J. Lee S. U. Lee M. H. J. Am. Chem. Soc. 2015;137:8018–8021. doi: 10.1021/jacs.5b04576. - DOI - PubMed
    10. Ma W. Zhang J. Zong J. Ren H. Tu D. Xu Q. Zhong Tang B. Yan H. Angew. Chem., Int. Ed. 2024;63:e202410430. doi: 10.1002/anie.202410430. - DOI - PubMed
    11. Saha A. Oleshkevich E. Vinas C. Teixidor F. Adv. Mater. 2017;29:1704238. doi: 10.1002/adma.201704238. - DOI - PubMed
    12. Cioran A. M. Musteti A. D. Teixidor F. Krpetić Ž. Prior I. A. He Q. Kiely C. J. Brust M. Viñas C. J. Am. Chem. Soc. 2012;134:212–221. doi: 10.1021/ja203367h. - DOI - PubMed

LinkOut - more resources