Isothermal Disorder-to-Order Transitions of DNA Origami Structures Induced by Alternative Component Subsets
- PMID: 40313835
- PMCID: PMC12041949
- DOI: 10.1021/jacsau.5c00195
Isothermal Disorder-to-Order Transitions of DNA Origami Structures Induced by Alternative Component Subsets
Abstract
DNA origami technology has shown potential across various applications, including the construction of molecular machines. Among these, mimicking the complex structural transitions of natural biomolecules in physiological environments remains a long-standing pursuit. Here, inspired by intrinsically disordered proteins, we propose a strategy for inducing disorder-to-order transitions in DNA origami structures at room temperature using alternative component subsets. In a triangular DNA origami model, we define three subsets of its constitutional DNA staples based on their spatial distributions along the scaffold. Atomic force microscopy and molecular dynamics simulations show that the individual subsets result in metastable assemblies with disordered morphologies and elevated free-energy fluctuations compared with those generated by the complete set of staples. Notably, after the addition of the remaining staples, the irregular structures transform into ordered triangular architectures within 2 h at room temperature, achieving yields of up to ∼60%. These findings suggest that these controlled folding pathways in DNA origami can robustly converge on the global energy minimum at room temperature, thereby providing a promising alternative strategy for engineering biomimetic DNA molecular machines.
© 2025 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures




Similar articles
-
Probing Heterogeneous Folding Pathways of DNA Origami Self-Assembly at the Molecular Level with Atomic Force Microscopy.Nano Lett. 2022 Sep 14;22(17):7173-7179. doi: 10.1021/acs.nanolett.2c02447. Epub 2022 Aug 17. Nano Lett. 2022. PMID: 35977401
-
In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20099-104. doi: 10.1073/pnas.1316521110. Epub 2013 Nov 25. Proc Natl Acad Sci U S A. 2013. PMID: 24277840 Free PMC article.
-
Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami.Small. 2013 Sep 9;9(17):2954-9. doi: 10.1002/smll.201202861. Epub 2013 Feb 22. Small. 2013. PMID: 23436715
-
Biomimetic Origami: A Biological Influence in Design.Biomimetics (Basel). 2024 Oct 4;9(10):600. doi: 10.3390/biomimetics9100600. Biomimetics (Basel). 2024. PMID: 39451806 Free PMC article. Review.
-
Overview of DNA origami for molecular self-assembly.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Mar-Apr;5(2):150-62. doi: 10.1002/wnan.1204. Epub 2013 Jan 17. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013. PMID: 23335504 Review.
Cited by
-
Isothermal assembly of DNA nanostructures.Chem Commun (Camb). 2025 May 28;61(44):7983-7994. doi: 10.1039/d5cc00760g. Chem Commun (Camb). 2025. PMID: 40358458 Review.
References
-
- Dey S.; Fan C.; Gothelf K. V.; Li J.; Lin C.; Liu L.; Liu N.; Nijenhuis M. A. D.; Saccà B.; Simmel F. C.; Yan H.; Zhan P. DNA Origami. Nat. Rev. Methods Primers 2021, 1 (1), 13.10.1038/s43586-020-00009-8. - DOI
LinkOut - more resources
Full Text Sources