Deep Learning Radiopathomics for Predicting Tumor Vasculature and Prognosis in Hepatocellular Carcinoma
- PMID: 40314587
- PMCID: PMC12130715
- DOI: 10.1148/rycan.250141
Deep Learning Radiopathomics for Predicting Tumor Vasculature and Prognosis in Hepatocellular Carcinoma
Conflict of interest statement
Figures
Comment on
-
Deep Learning Radiopathomics Models Based on Contrast-enhanced MRI and Pathologic Imaging for Predicting Vessels Encapsulating Tumor Clusters and Prognosis in Hepatocellular Carcinoma.Radiol Imaging Cancer. 2025 Mar;7(2):e240213. doi: 10.1148/rycan.240213. Radiol Imaging Cancer. 2025. PMID: 40084948 Free PMC article.
References
-
- Renne SL , Woo HY , Allegra S , et al. . Vessels Encapsulating Tumor Clusters (VETC) Is a Powerful Predictor of Aggressive Hepatocellular Carcinoma . Hepatology 2020. ; 71 ( 1 ): 183 – 195 . - PubMed
-
- Chernyak V . Editorial for "Deep Learning Radiomics Model of Dynamic Contrast-Enhanced MRI for Evaluating Vessels Encapsulating Tumor Clusters and Prognosis in Hepatocellular Carcinoma . J Magn Reson Imaging 2024. ; 59 ( 1 ): 120 – 121 . - PubMed
-
- Yang J , Dong X , Wang G , et al. . Preoperative MRI features for characterization of vessels encapsulating tumor clusters and microvascular invasion in hepatocellular carcinoma . Abdom Radiol (NY) 2023. ; 48 ( 2 ): 554 – 566 . - PubMed
-
- Qu Q , Liu Z , Lu M , et al. . Preoperative Gadoxetic Acid-Enhanced MRI Features for Evaluation of Vessels Encapsulating Tumor Clusters and Microvascular Invasion in Hepatocellular Carcinoma: creating Nomograms for Risk Assessment . J Magn Reson Imaging 2024. ; 60 ( 3 ): 1094 – 1110 . - PubMed
Publication types
LinkOut - more resources
Full Text Sources
