Leaf miRNAs of Withania somnifera Negatively Regulate the Aging-Associated Genes in C. elegans
- PMID: 40314900
- DOI: 10.1007/s12035-025-04995-2
Leaf miRNAs of Withania somnifera Negatively Regulate the Aging-Associated Genes in C. elegans
Abstract
Aging is a physiological process that culminates in cellular senescence, a phenomenon that has significant implications for health and longevity. Plant-based therapeutics, particularly the root of Withania somnifera, have been reported to delay the onset and progression of aging and its associated disorders, including Alzheimer's disease, Parkinson's disease, and other neurodegenerative disorders. However, the role of leaf-derived microRNAs (miRNAs) from W. somnifera in the molecular regulation of genes involved in aging remains poorly understood. Caenorhabditis elegans serves as an indispensable model organism for studying aging-associated gene regulation due to its short lifespan, conserved human orthologs, and ease of laboratory cultivation. In this study, we explored the regulatory interactions between miRNAs derived from the leaf tissues of W. somnifera and aging-associated genes, utilizing C. elegans as a model organism. We employed bioinformatics to identify miRNAs that interact with aging-associated genes in C. elegans and found that three specific miRNAs in the leaf tissue of W. somnifera interacted with these genes. To assess the physiological effects of these miRNAs on C. elegans, we conducted biochemical assays, including lifespan, chemotaxis, and stress resistance assays. Additionally, we investigated the differential gene expression of the interacting genes in the presence and absence of W. somnifera leaf miRNA treatment using real-time PCR. The results indicated that the expression levels of the age-1 and sel-12 genes were significantly downregulated, while the apl-1 gene was upregulated following treatment with leaf miRNAs in C. elegans. These findings suggest that miRNAs derived from W. somnifera leaves may play a crucial role in regulating aging-associated gene expression. This is the first study, to our knowledge, that identifies the miRNAs of W. somnifera leaf involved in aging-associated gene regulation, thereby paving the way for future research into the therapeutic potential of plant-derived miRNAs in combating age-related disorders.
Keywords: C. elegans; W. somnifera; Aging; Cross-kingdom regulation; MiRNAs.
© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Conflict of interest statement
Declarations. Competing interests: The authors declare no competing interests.
Similar articles
-
Prescription of Controlled Substances: Benefits and Risks.2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. 2025 Jul 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–. PMID: 30726003 Free Books & Documents.
-
Impacts of a high-glucose diet or starvation on microRNA-transcription factor networks in Caenorhabditis elegans through Boolean mathematical modeling.Biosystems. 2025 Sep;255:105503. doi: 10.1016/j.biosystems.2025.105503. Epub 2025 May 25. Biosystems. 2025. PMID: 40425126
-
A MicroRNA Screen Identifies the Wnt Signaling Pathway as a Regulator of the Interferon Response during Flavivirus Infection.J Virol. 2017 Mar 29;91(8):e02388-16. doi: 10.1128/JVI.02388-16. Print 2017 Apr 15. J Virol. 2017. PMID: 28148804 Free PMC article.
-
The Black Book of Psychotropic Dosing and Monitoring.Psychopharmacol Bull. 2024 Jul 8;54(3):8-59. Psychopharmacol Bull. 2024. PMID: 38993656 Free PMC article. Review.
-
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4. Cochrane Database Syst Rev. 2021. Update in: Cochrane Database Syst Rev. 2022 May 23;5:CD011535. doi: 10.1002/14651858.CD011535.pub5. PMID: 33871055 Free PMC article. Updated.
References
-
- Saha P, Ajgaonkar S, Maniar D, Sahare S, Mehta D, Nair S (2024) Current insights into transcriptional role(s) for the nutraceutical Withania somnifera in inflammation and aging. Front Nutr 11:1370951. https://doi.org/10.3389/fnut.2024.1370951 - DOI - PubMed - PMC
-
- Ageing and health [Internet]. Available at: https://www.who.int/news-room/fact - sheets/detail/ageing-and-health (Accessed 24 March, 2025).
-
- Zhang S, Li F, Zhou T, Wang G, Li Z (2020) Caenorhabditis elegans as a useful model for studying aging mutations. Front Endocrinol 11:554994. https://doi.org/10.3389/fendo.2020.554994 - DOI
-
- Lukiw WJ (2007) Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. NeuroReport 18:297–300 - PubMed
-
- Hebert SS, Horre K, Nicolai L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B (2009) MicroRNA regulation of Alzheimer’s amyloid precursor protein expression. Neurobiol Dis 33:422–428 - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical