Chromatin-bound U2AF2 splicing factor ensures exon inclusion
- PMID: 40315850
- DOI: 10.1016/j.molcel.2025.04.013
Chromatin-bound U2AF2 splicing factor ensures exon inclusion
Abstract
Most mRNA splicing occurs co-transcriptionally, but it is unclear how splicing factors accurately select exons for inclusion. Using CUT&RUN profiling in K562 cells, we demonstrate that three splicing factors-SF3B1, U2AF1, and U2AF2-bind near active promoters of intron-containing and intronless genes, implying their association with the general transcriptional machinery. RNase A treatment reduces factor binding at promoters, indicating that these proteins interact with nascent transcripts. Strikingly, the U2AF2 protein also accumulates throughout intron-containing gene bodies and requires histone H3-lysine36 trimethylation but not nascent transcripts or persistent RNA polymerase II. Chromatin-bound U2AF2 preferentially binds to exons of highly expressed, exon-dense genes, with greater occupancy at exons skipped after U2AF2 knockdown, suggesting that U2AF2 enhances exon selection accuracy. U2AF2-targeted genes include those encoding splicing factors, where it improves splicing accuracy and efficiency. Our findings provide a mechanistic basis for the homeostatic regulation of efficient co-transcriptional splicing by chromatin-bound U2AF2.
Keywords: H3K36me3; RNA polymerase II; SF3B155; U2AF35; U2AF65; co-transcriptional RNA splicing; exon definition.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
