Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Sep 1;437(17):169181.
doi: 10.1016/j.jmb.2025.169181. Epub 2025 Apr 30.

Artificial-intelligence-driven Innovations in Mechanistic Computational Modeling and Digital Twins for Biomedical Applications

Affiliations
Review

Artificial-intelligence-driven Innovations in Mechanistic Computational Modeling and Digital Twins for Biomedical Applications

Bhanwar Lal Puniya. J Mol Biol. .

Abstract

Understanding of complex biological systems remains a significant challenge due to their high dimensionality, nonlinearity, and context-specific behavior. Artificial intelligence (AI) and mechanistic modeling are becoming essential tools for studying such complex systems. Mechanistic modeling can facilitate the construction of simulatable models that are interpretable but often struggle with scalability and parameters estimation. AI can integrate multi-omics data to create predictive models, but it lacks interpretability. The gap between these two modeling methods limits our ability to develop comprehensive and predictive models for biomedical applications. This article reviews the most recent advancements in the integration of AI and mechanistic modeling to fill this gap. Recently, with omics availability, AI has led to new discoveries in mechanistic computational modeling. The mechanistic models can also help in getting insight into the mechanism for prediction made by AI models. This integration is helpful in modeling complex systems, estimating the parameters that are hard to capture in experiments, and creating surrogate models to reduce computational costs because of expensive mechanistic model simulations. This article focuses on advancements in mechanistic computational models and AI models and their integration for scientific discoveries in biology, pharmacology, drug discovery and diseases. The mechanistic models with AI integration can facilitate biological discoveries to advance our understanding of disease mechanisms, drug development, and personalized medicine. The article also highlights the role of AI and mechanistic model integration in the development of more advanced models in the biomedical domain, such as medical digital twins and virtual patients for pharmacological discoveries.

Keywords: artificial intelligence; biomedicine; mechanistic modeling; medical digital twins; systems biology.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources