Emergence of snail mucus as a multifunctional biogenic material for biomedical applications
- PMID: 40319989
- DOI: 10.1016/j.actbio.2025.05.006
Emergence of snail mucus as a multifunctional biogenic material for biomedical applications
Abstract
Snails are mollusks or shelled gastropods found everywhere on Earth. Biologically, snail mucus can be described as a multifunctional natural polymeric gel with adhesive and antimicrobial properties, rendering it a promising ingredient in pharmaceutics and biomedical applications. These properties have been exploited in cosmetics and dermatology applications over the last few years. However, the exploration of snail mucus for other biomedical applications, e.g., wound healing and drug delivery, remains new and very promising. Against this backdrop, this review explores the potential of snail mucus for a wide spectrum of biomedical applications, ranging from wound healing to cancer treatment to regenerative engineering. It will be emphasized how its application in wound healing has gained traction owing to its antimicrobial and anti-inflammatory properties. Beyond wound care, snail mucus has been investigated as a drug delivery vehicle in treating diabetes and targeted cancer therapies. While further extensive research and clinical trials are needed to solidify the efficacy of snail mucus as a biomaterial, this review will shed light on the prospect of using snail mucus alone and in combination with other natural or synthetic biopolymers as soft materials for widespread biomedical applications. STATEMENT OF SIGNIFICANCE: Exploring snail mucus as a biomaterial across various fields, including oncology, drug delivery, cosmetics, antibacterial properties, and wound healing, presents a fascinating avenue for zootherapy research. This review provides an in-depth account of the recent developments in snail mucus' potential for a broad spectrum of biomedical applications, from wound healing to cancer treatment and regenerative engineering. It highlights the growing interest in mucus' use in wound healing, attributed to its antimicrobial and anti-inflammatory properties. It has also been investigated as a drug delivery vehicle for diabetes treatment and targeted cancer therapies. The impact of such research is significant, as it could lead to the creation of innovative biomaterials for a wide range of applications, revolutionizing the field of biomaterials.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Similar articles
-
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.Health Technol Assess. 2001;5(32):1-195. doi: 10.3310/hta5320. Health Technol Assess. 2001. PMID: 12065068
-
Dressings and topical agents for treating pressure ulcers.Cochrane Database Syst Rev. 2017 Jun 22;6(6):CD011947. doi: 10.1002/14651858.CD011947.pub2. Cochrane Database Syst Rev. 2017. PMID: 28639707 Free PMC article.
-
Home treatment for mental health problems: a systematic review.Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150. Health Technol Assess. 2001. PMID: 11532236
-
The use of Open Dialogue in Trauma Informed Care services for mental health consumers and their family networks: A scoping review.J Psychiatr Ment Health Nurs. 2024 Aug;31(4):681-698. doi: 10.1111/jpm.13023. Epub 2024 Jan 17. J Psychiatr Ment Health Nurs. 2024. PMID: 38230967
-
Topical antimicrobial agents for treating foot ulcers in people with diabetes.Cochrane Database Syst Rev. 2017 Jun 14;6(6):CD011038. doi: 10.1002/14651858.CD011038.pub2. Cochrane Database Syst Rev. 2017. PMID: 28613416 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials