Access to spirocyclic vinyl sulfones via radical cyclization and functional group migration
- PMID: 40321185
- PMCID: PMC12044546
- DOI: 10.1039/d5sc02555a
Access to spirocyclic vinyl sulfones via radical cyclization and functional group migration
Abstract
Spirocyclic vinyl sulfones, which incorporate the three-dimensional structure inherent to spiro compounds and the Michael acceptor reactivity associated with vinyl sulfones, hold promise for novel biological activities. The lack of efficient synthetic methods, however, hinders their extensive investigations in drug discovery and development. In this work, we describe a practical and versatile approach for the synthesis of multi-functionalized spirocyclic vinyl sulfones from easily available materials. The reaction proceeds efficiently through a cascade of radical cyclization followed by (hetero)aryl migration. The protocol features mild photocatalytic conditions and provides access to a diverse range of products, enabling the construction of complex scaffolds, including medium-sized ring-fused spirocyclic vinyl sulfones.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures




Similar articles
-
Vinyl sulfone-modified carbohydrates: Michael acceptors and 2π partners for the synthesis of functionalized sugars and enantiomerically pure carbocycles and heterocycles.Adv Carbohydr Chem Biochem. 2020;78:1-134. doi: 10.1016/bs.accb.2020.10.001. Adv Carbohydr Chem Biochem. 2020. PMID: 33276909
-
Vinyl sulfones: synthetic preparations and medicinal chemistry applications.Med Res Rev. 2006 Nov;26(6):793-814. doi: 10.1002/med.20074. Med Res Rev. 2006. PMID: 16788979 Review.
-
Reactivity of 5-(Alkynyl)dibenzothiophenium Salts: Synthesis of Diynes, Vinyl Sulfones, and Phenanthrenes.European J Org Chem. 2021 Aug 6;2021(29):4038-4048. doi: 10.1002/ejoc.202100323. Epub 2021 May 5. European J Org Chem. 2021. PMID: 34588919 Free PMC article.
-
Phosphine-Catalyzed Cascade Cycloaddition of Vinyl Oxiranes with Sulfonium Compounds to Step-Economically Construct Spiro-2(3H)-furanone Scaffolds.Org Lett. 2025 Jan 24;27(3):715-721. doi: 10.1021/acs.orglett.4c03633. Epub 2025 Jan 9. Org Lett. 2025. PMID: 39788757
-
Spirocyclic Scaffolds in Medicinal Chemistry.J Med Chem. 2021 Jan 14;64(1):150-183. doi: 10.1021/acs.jmedchem.0c01473. Epub 2020 Dec 31. J Med Chem. 2021. PMID: 33381970 Review.
References
-
- Wermuth C. G., in The Practice of Medicinal Chemistry, Elsevier Academic Press, San Diego, 2003
-
-
For selected reviews:
- Lin H. Danishefsky S. J. Angew. Chem., Int. Ed. 2003;42:36–51. doi: 10.1002/anie.200390048. - DOI - PubMed
- Galliford C. Scheidt K. Angew. Chem., Int. Ed. 2007;46:8748–8758. doi: 10.1002/anie.200701342. - DOI - PubMed
- Rios R. Chem. Soc. Rev. 2012;41:1060–1074. doi: 10.1039/C1CS15156H. - DOI - PubMed
- Undheim K. Synthesis. 2014;46:1957–2006. doi: 10.1055/s-0033-1338640. - DOI
- Smith L. K. Baxendale I. R. Org. Biomol. Chem. 2015;13:9907–9933. doi: 10.1039/C5OB01524C. - DOI - PubMed
- Xie X. Huang W. Peng C. Han B. Adv. Synth. Catal. 2018;360:194–228. doi: 10.1002/adsc.201700927. - DOI
- Xu P.-W. Yu J.-S. Chen C. Cao Z.-Y. Zhou F. Zhou J. ACS Catal. 2019;9:1820–1882. doi: 10.1021/acscatal.8b03694. - DOI
- Ramon R. T., Spiro Compounds: Synthesis and Applications, VCH, 2022, https://dx.doi.org/10.1002/9781119567646 - DOI
- Kargbo R. B. ACS Med. Chem. Lett. 2025;16:216–218. doi: 10.1021/acsmedchemlett.5c00028. - DOI - PMC - PubMed
-
-
-
For selected reviews:
- Zheng Y. Tice C. M. Singh S. B. Bioorg. Med. Chem. Lett. 2014;24:3673–3682. doi: 10.1016/j.bmcl.2014.06.081. - DOI - PubMed
- Varela M. T. Dias G. G. de Oliveira L. F. N. de Oliveira R. G. Aguiar F. D. Nogueira J. P. Cruz L. R. Dias L. C. Eur. J. Med. Chem. 2025;287:117368. doi: 10.1016/j.ejmech.2025.117368. - DOI - PubMed
-
-
- Schobert R. Biersack B. Knauer S. Ocker M. Bioorg. Med. Chem. 2008;16:8592–8597. doi: 10.1016/j.bmc.2008.08.015. - DOI - PubMed
- Knauer S. Biersack B. Zoldakova M. Effenberger K. Milius W. Schobert R. Anti-Cancer Drugs. 2009;20:676–681. doi: 10.1097/CAD.0b013e32832e056a. - DOI - PubMed
- Schobert R. Seibt S. Mahal K. Ahmad A. Biersack B. Effenberger-Neidnicht K. Padhye S. Sarkar F. H. Mueller T. J. Med. Chem. 2011;54:6177–6182. doi: 10.1021/jm200359n. - DOI - PubMed
- Le P. Nodwell M. B. Eirich J. Sieber S. A. Chem.–Eur. J. 2019;25:12644–12651. doi: 10.1002/chem.201902919. - DOI - PMC - PubMed
- Linder B. Zoldakova M. Kornyei Z. Köhler L. H. F. Seibt S. Menger D. Wetzel A. Madarász E. Schobert R. Kögel D. Int. J. Mol. Sci. 2022;23:9056. doi: 10.3390/ijms23169056. - DOI - PMC - PubMed
-
- McMorris T. C. Anchel M. J. Am. Chem. Soc. 1965;87:1594–1600. doi: 10.1021/ja01085a031. - DOI - PubMed
- Kelner M. J. McMorris T. C. Beck W. T. Zamora J. M. Taetle R. Cancer Res. 1987;47:3186–3189. - PubMed
- Jaspers N. G. Raams A. Kelner M. J. Ng J. M. Yamashita Y. M. Takeda S. McMorris T. C. Hoeijmakers J. H. DNA Repair. 2002;1:1027–1038. doi: 10.1016/S1568-7864(02)00166-0. - DOI - PubMed
- Lehmann V. K. Huang A. Ibanez-Calero S. Wilson G. R. Rinehart K. L. J. Nat. Prod. 2003;66:1257–1258. doi: 10.1021/np030205w. - DOI - PubMed
- Schobert R. Knauer S. Seibt S. Biersack B. Curr. Med. Chem. 2011;18:790–807. doi: 10.2174/092986711794927766. - DOI - PubMed
- Glatt H. Pietsch K. E. Sturla S. J. Meinl W. Arch. Toxicol. 2014;88:161–169. doi: 10.1007/s00204-013-1097-2. - DOI - PubMed
- Uto Y. Sasaki K. Takahashi M. Morimoto K. Inoue K. Anal. Sci. 2019;35:789–792. doi: 10.2116/analsci.19P053. - DOI - PubMed
- Casimir L. Zimmer S. Racine-Brassard F. Jacques P.-É. Maréchal A. DNA Repair. 2023;122:103433. doi: 10.1016/j.dnarep.2022.103433. - DOI - PubMed
LinkOut - more resources
Full Text Sources