Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 29;16(22):9715-9719.
doi: 10.1039/d5sc02555a. eCollection 2025 Jun 4.

Access to spirocyclic vinyl sulfones via radical cyclization and functional group migration

Affiliations

Access to spirocyclic vinyl sulfones via radical cyclization and functional group migration

Shan Yang et al. Chem Sci. .

Abstract

Spirocyclic vinyl sulfones, which incorporate the three-dimensional structure inherent to spiro compounds and the Michael acceptor reactivity associated with vinyl sulfones, hold promise for novel biological activities. The lack of efficient synthetic methods, however, hinders their extensive investigations in drug discovery and development. In this work, we describe a practical and versatile approach for the synthesis of multi-functionalized spirocyclic vinyl sulfones from easily available materials. The reaction proceeds efficiently through a cascade of radical cyclization followed by (hetero)aryl migration. The protocol features mild photocatalytic conditions and provides access to a diverse range of products, enabling the construction of complex scaffolds, including medium-sized ring-fused spirocyclic vinyl sulfones.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Importance and practical synthesis of spirocyclic vinyl sulfones.
Scheme 2
Scheme 2. Demonstration of broad functional group compatibility. Reaction conditions: 1 (0.2 mmol), 2 (0.3 mmol), Na2HPO4 (0.2 mmol), and fac-Ir(ppy)3 (3 mol%) in DCM/H2O (v/v 2 mL/0.2 mL), irradiated with 12 W blue LEDs at room temperature under N2. Yields of isolated products are given.
Scheme 3
Scheme 3. Construction of complex ring-fused spirocyclic vinyl sulfones. Reaction conditions: 4 (0.2 mmol), 2 (0.3 mmol), Na2HPO4 (0.2 mmol), and fac-Ir(ppy)3 (3 mol%) in DCM/H2O (v/v 2 mL/0.2 mL), irradiated with 12 W blue LEDs at room temperature under N2. Yields of isolated products are given.
Scheme 4
Scheme 4. Gram-scale preparation, mechanistic studies and proposed mechanism.

Similar articles

References

    1. Wermuth C. G., in The Practice of Medicinal Chemistry, Elsevier Academic Press, San Diego, 2003
    1. For selected reviews:

    2. Lin H. Danishefsky S. J. Angew. Chem., Int. Ed. 2003;42:36–51. doi: 10.1002/anie.200390048. - DOI - PubMed
    3. Galliford C. Scheidt K. Angew. Chem., Int. Ed. 2007;46:8748–8758. doi: 10.1002/anie.200701342. - DOI - PubMed
    4. Rios R. Chem. Soc. Rev. 2012;41:1060–1074. doi: 10.1039/C1CS15156H. - DOI - PubMed
    5. Undheim K. Synthesis. 2014;46:1957–2006. doi: 10.1055/s-0033-1338640. - DOI
    6. Smith L. K. Baxendale I. R. Org. Biomol. Chem. 2015;13:9907–9933. doi: 10.1039/C5OB01524C. - DOI - PubMed
    7. Xie X. Huang W. Peng C. Han B. Adv. Synth. Catal. 2018;360:194–228. doi: 10.1002/adsc.201700927. - DOI
    8. Xu P.-W. Yu J.-S. Chen C. Cao Z.-Y. Zhou F. Zhou J. ACS Catal. 2019;9:1820–1882. doi: 10.1021/acscatal.8b03694. - DOI
    9. Ramon R. T., Spiro Compounds: Synthesis and Applications, VCH, 2022, https://dx.doi.org/10.1002/9781119567646 - DOI
    10. Kargbo R. B. ACS Med. Chem. Lett. 2025;16:216–218. doi: 10.1021/acsmedchemlett.5c00028. - DOI - PMC - PubMed
    1. For selected reviews:

    2. Zheng Y. Tice C. M. Singh S. B. Bioorg. Med. Chem. Lett. 2014;24:3673–3682. doi: 10.1016/j.bmcl.2014.06.081. - DOI - PubMed
    3. Varela M. T. Dias G. G. de Oliveira L. F. N. de Oliveira R. G. Aguiar F. D. Nogueira J. P. Cruz L. R. Dias L. C. Eur. J. Med. Chem. 2025;287:117368. doi: 10.1016/j.ejmech.2025.117368. - DOI - PubMed
    1. Schobert R. Biersack B. Knauer S. Ocker M. Bioorg. Med. Chem. 2008;16:8592–8597. doi: 10.1016/j.bmc.2008.08.015. - DOI - PubMed
    2. Knauer S. Biersack B. Zoldakova M. Effenberger K. Milius W. Schobert R. Anti-Cancer Drugs. 2009;20:676–681. doi: 10.1097/CAD.0b013e32832e056a. - DOI - PubMed
    3. Schobert R. Seibt S. Mahal K. Ahmad A. Biersack B. Effenberger-Neidnicht K. Padhye S. Sarkar F. H. Mueller T. J. Med. Chem. 2011;54:6177–6182. doi: 10.1021/jm200359n. - DOI - PubMed
    4. Le P. Nodwell M. B. Eirich J. Sieber S. A. Chem.–Eur. J. 2019;25:12644–12651. doi: 10.1002/chem.201902919. - DOI - PMC - PubMed
    5. Linder B. Zoldakova M. Kornyei Z. Köhler L. H. F. Seibt S. Menger D. Wetzel A. Madarász E. Schobert R. Kögel D. Int. J. Mol. Sci. 2022;23:9056. doi: 10.3390/ijms23169056. - DOI - PMC - PubMed
    1. McMorris T. C. Anchel M. J. Am. Chem. Soc. 1965;87:1594–1600. doi: 10.1021/ja01085a031. - DOI - PubMed
    2. Kelner M. J. McMorris T. C. Beck W. T. Zamora J. M. Taetle R. Cancer Res. 1987;47:3186–3189. - PubMed
    3. Jaspers N. G. Raams A. Kelner M. J. Ng J. M. Yamashita Y. M. Takeda S. McMorris T. C. Hoeijmakers J. H. DNA Repair. 2002;1:1027–1038. doi: 10.1016/S1568-7864(02)00166-0. - DOI - PubMed
    4. Lehmann V. K. Huang A. Ibanez-Calero S. Wilson G. R. Rinehart K. L. J. Nat. Prod. 2003;66:1257–1258. doi: 10.1021/np030205w. - DOI - PubMed
    5. Schobert R. Knauer S. Seibt S. Biersack B. Curr. Med. Chem. 2011;18:790–807. doi: 10.2174/092986711794927766. - DOI - PubMed
    6. Glatt H. Pietsch K. E. Sturla S. J. Meinl W. Arch. Toxicol. 2014;88:161–169. doi: 10.1007/s00204-013-1097-2. - DOI - PubMed
    7. Uto Y. Sasaki K. Takahashi M. Morimoto K. Inoue K. Anal. Sci. 2019;35:789–792. doi: 10.2116/analsci.19P053. - DOI - PubMed
    8. Casimir L. Zimmer S. Racine-Brassard F. Jacques P.-É. Maréchal A. DNA Repair. 2023;122:103433. doi: 10.1016/j.dnarep.2022.103433. - DOI - PubMed

LinkOut - more resources