Macrophage polarization in cancer and beyond: from inflammatory signaling pathways to potential therapeutic strategies
- PMID: 40324582
- DOI: 10.1016/j.canlet.2025.217772
Macrophage polarization in cancer and beyond: from inflammatory signaling pathways to potential therapeutic strategies
Abstract
Macrophages are innate immune cells distributed throughout the body that play vital roles in organ development, tissue homeostasis, and immune surveillance. Macrophages acquire a binary M1/M2 polarized phenotype through signaling cascades upon sensing different signaling molecules in the environment, thereby playing a core role in a series of immune tasks, rendering precise regulation essential. M1/M2 macrophage phenotypes regulate inflammatory responses, while controlled activation of inflammatory signaling pathways is involved in regulating macrophage polarization. Among the relevant signaling pathways, we focus on the six well-characterized NF-κB, MAPK, JAK-STAT, PI3K/AKT, inflammasome, and cGAS-STING inflammatory pathways, and elucidate their roles and crosstalk in macrophage polarization. Furthermore, the effects of many environmental signals that influence macrophage polarization are investigated by modulating these pathways in vivo and in vitro. We thus detail the physiological and pathophysiological status of these six inflammatory signaling pathways and involvement in regulating macrophage polarization in cancer and beyond, as well as describe potential therapeutic approaches targeting these signaling pathways. In this review, the latest research advances in inflammatory signaling pathways regulating macrophage polarization are reviewed, as targeting these inflammatory signaling pathways provides suitable strategies to intervene in macrophage polarization and various tumor and non-tumor diseases.
Keywords: Cancer; Immunity; Inflammatory signaling pathways; Macrophage polarization.
Copyright © 2025 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
