Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Aug 1;103(8):257-269.
doi: 10.1139/cjpp-2024-0270. Epub 2025 May 7.

Epigenetic regulation by ketone bodies in cardiac diseases and repair

Affiliations
Free article
Review

Epigenetic regulation by ketone bodies in cardiac diseases and repair

Narasimman Gurusamy et al. Can J Physiol Pharmacol. .
Free article

Abstract

Ketone bodies, particularly β-hydroxybutyrate (BHB), play an important role in the epigenetic regulation of gene expression in cardiac tissues, impacting both cardiac health and disease. This review explores the multifaceted influence of ketone bodies on epigenetic mechanisms, including histone acetylation, DNA methylation, ubiquitination, sirtuins activation, and RNA modulation. By acting as endogenous histone deacetylase inhibitors, ketone bodies enhance histone acetylation, thereby promoting the expression of genes involved in antioxidant defenses, anti-inflammatory responses, and metabolic regulation. Furthermore, BHB affects DNA methylation patterns by altering the availability of key metabolites such as S-adenosylmethionine. Ketogenic diet, which elevates BHB levels, has been shown to modulate gene expression, such as increasing FOXO3a and metallothionein 2, and improve cardiac function. This review highlights the therapeutic potential of ketone bodies in managing cardiac diseases through their epigenetic effects, underscoring the need for further research to elucidate the detailed molecular pathways and long-term impacts of these metabolic interventions.

Keywords: antioxidant; cardiac; epigenetic; ketone body; metabolism; mitochondria.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

LinkOut - more resources