Transport of ethanolamine and its incorporation into the variant surface glycoprotein of bloodstream forms of Trypanosoma brucei
- PMID: 4033688
- DOI: 10.1016/0166-6851(85)90088-x
Transport of ethanolamine and its incorporation into the variant surface glycoprotein of bloodstream forms of Trypanosoma brucei
Abstract
The membrane-attached form of the variant surface glycoprotein (mf-VSG) of bloodstream forms of Trypanosoma brucei is anchored to the plasma membrane by a hydrophobic C-terminal lipo-oligosaccharide containing ethanolamine. Analysis by polyacrylamide gel electrophoresis showed that several different cloned T. brucei strains (strain EATRO 110 and variants 117 and 118 of strain 427) incorporated [3H]ethanolamine into both mf-VSG and the soluble VSG derived from it, but not into other proteins. Other trypanosomatids, e.g. Leishmania mexicana promastigotes, T. cruzi epimastigotes, and T. brucei procyclic forms, did not incorporate ethanolamine into cellular proteins. Thus, [3H]ethanolamine can be used as a specific biosynthetic label for T. brucei VSG polypeptides. The time course of incorporation of [3H]ethanolamine into VSG showed a lag period of about 15 min. Double-labelling experiments using [3H]ethanolamine and H3[32P]O4 demonstrated that ethanolamine labelled only the C-terminal moiety and was not incorporated into other portions of the VSG molecule. Cellular uptake of ethanolamine occurred via a specific carrier-mediated transport system having a Vmax of 132 pmol min-1 mg-1 protein and a Km of 3.7 microM. The properties of this transport system are consistent with the possibility that ethanolamine is derived entirely from the host.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
