Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May 8.
doi: 10.1007/s11357-025-01675-w. Online ahead of print.

Age-associated methionine sulfoxide reductase A protects against valvular interstitial cell senescence and valvular calcification

Affiliations

Age-associated methionine sulfoxide reductase A protects against valvular interstitial cell senescence and valvular calcification

Qing Li et al. Geroscience. .

Abstract

Calcific aortic valve disease (CAVD) is a cardiovascular disease prevalent in the aging population, resulting in high morbidity and mortality rates. However, the molecular mechanisms underlying CAVD remain unclear. We initially conducted an RNA sequencing analysis of aortic valve leaflets from rats of different ages to identify key genes involved in valvular aging and calcification. Bioinformatics analysis demonstrated that methionine sulfoxide reductase A (MSRA) was crucial to valvular calcification and senescence. To further investigate whether and how MSRA influences CAVD pathogenesis, we utilized two in vitro models: a human valvular interstitial cell (VIC) calcification model induced by osteogenic medium, and a VIC senescence model induced by hydrogen peroxide. Western blotting, immunofluorescence, flow cytometry, and alkaline phosphatase staining were conducted to evaluate the changes in calcific nodule formation and senescent markers. In vivo, ApoE-/- mice were treated either a normal chow or a high-cholesterol chow to determine the effects of MSRA overexpression on aortic valve calcification and senescence. MSRA silencing increased the osteogenic differentiation and senescence of VIC, whereas its overexpression produced the opposite effects. Similarly, we found that MSRA overexpression reduced calcium deposition and decreased the levels of senescent markers in ApoE-/- mice. Further mechanism experiments showed that MSRA suppressed osteoblastic differentiation via inhibiting the toll-like receptor (TLR2)/nuclear factor-κB (NF-κB) pathway. Our findings demonstrate that MSRA ameliorates valvular calcification and senescence by inhibiting TLR2/NF-κB pathway, highlighting MSRA as a promising target for treating age-associated CAVD.

Keywords: Calcific aortic valve disease; Methionine sulfoxide reductase A; Nuclear factor-κB; Senescence; Toll-like receptor 2.

PubMed Disclaimer

Conflict of interest statement

Declarations. Competing interests: The authors declare no competing interests.

References

    1. Coffey S, Roberts-Thomson R, Brown A, Carapetis J, Chen M, Enriquez-Sarano M, et al. Global epidemiology of valvular heart disease. Nat Rev Cardiol. 2021;18(12):853–64. - PubMed - DOI
    1. Yadgir S, Johnson CO, Aboyans V, Adebayo OM, Adedoyin RA, Afarideh M, et al. Global, regional, and national burden of calcific aortic valve and degenerative mitral valve diseases, 1990–2017. Circulation. 2020;141(21):1670–80. - PubMed - DOI
    1. Moncla LM, Briend M, Bossé Y, Mathieu P. Calcific aortic valve disease: mechanisms, prevention and treatment. Nat Rev Cardiol. 2023;20(8):546–59. - PubMed - DOI
    1. Bendayan M, Messas N, Perrault LP, Asgar AW, Lauck S, Kim DH, et al. Frailty and bleeding in older adults undergoing TAVR or SAVR: insights from the FRAILTY-AVR study. JACC Cardiovasc Interv. 2020;13(9):1058–68. - PubMed - DOI
    1. Kraler S, Blaser MC, Aikawa E, Camici GG, Lüscher TF. Calcific aortic valve disease: from molecular and cellular mechanisms to medical therapy. Eur Heart J. 2022;43(7):683–97. - PubMed - DOI

LinkOut - more resources