Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jun:312:143990.
doi: 10.1016/j.ijbiomac.2025.143990. Epub 2025 May 15.

Bioprinting functional constructs for women's reproductive health: Utilizing tailored biomaterials and biopolymer macromolecules for drug delivery and tissue regeneration

Affiliations
Review

Bioprinting functional constructs for women's reproductive health: Utilizing tailored biomaterials and biopolymer macromolecules for drug delivery and tissue regeneration

Krishna Yadav et al. Int J Biol Macromol. 2025 Jun.

Abstract

The application of 3D bioprinting, combined with the versatility of biomaterials and biopolymers macromolecules is revolutionizing the landscape of women's reproductive health. Biomaterials, including both natural and synthetic variants, offer unmatched biocompatibility, degradability, and functional adaptability, enabling the development of innovative solutions for complex reproductive disorders. This review examines the pivotal role of biomaterials and biopolymers macromolecules in creating scaffolds, bioinks, and drug delivery systems tailored to address disorders such as endometriosis, polycystic ovary syndrome, gynecological cancers, and so on. By integrating biomaterials, 3D bioprinting overcomes anatomical and physiological challenges unique to the female reproductive tract, such as cyclic hormonal variations and diverse microbiomes, ensuring precise and personalized healthcare interventions. The potential of various polymer-based hydrogels (biomaterials and biopolymers) in sustained drug delivery and regenerative tissue applications is highlighted, along with advancements in tissue-engineered constructs for reproductive health restoration. This amalgamation of polymer science and 3D bioprinting not only enhances therapeutic outcomes but also paves the way for innovative advancements in women's healthcare, addressing long-standing challenges with unparalleled precision and efficacy.

Keywords: 3D printing; Biomaterials; Drug delivery systems; Medical devices; Women's reproductive health.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources