Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jun 16;8(6):4549-4579.
doi: 10.1021/acsabm.5c00489. Epub 2025 May 12.

Nanotechnology-Enhanced siRNA Delivery: Revolutionizing Cancer Therapy

Affiliations
Review

Nanotechnology-Enhanced siRNA Delivery: Revolutionizing Cancer Therapy

Donya Esmaeilpour et al. ACS Appl Bio Mater. .

Abstract

RNA interference (RNAi) has emerged as a transformative approach for cancer therapy, enabling precise gene silencing through small interfering RNA (siRNA). However, the clinical application of siRNA-based treatments faces challenges such as rapid degradation, inefficient cellular uptake, and immune system clearance. Nanotechnology-enhanced siRNA delivery has revolutionized cancer therapy by addressing these limitations, improving siRNA stability, tumor-specific targeting, and therapeutic efficacy. Recent advancements in nanocarrier engineering have introduced innovative strategies to enhance the safety and precision of siRNA-based therapies, offering new opportunities for personalized medicine. This review highlights three key innovations in nanotechnology-enhanced siRNA delivery: artificial intelligence (AI)-driven nanocarrier design, multifunctional nanoparticles for combined therapeutic strategies, and biomimetic nanocarriers for enhanced biocompatibility. AI-driven nanocarriers utilize machine learning algorithms to optimize nanoparticle properties, improving drug release profiles and minimizing off-target effects. Multifunctional nanoparticles integrate siRNA with chemotherapy, immunotherapy, or photothermal therapy, enabling synergistic treatment approaches that enhance therapeutic outcomes and reduce drug resistance. Biomimetic nanocarriers, including exosome-mimicking systems and cell-membrane-coated nanoparticles, improve circulation time, immune evasion, and targeted tumor delivery. These innovations collectively enhance the precision, efficiency, and safety of siRNA-based cancer therapies. The scope and novelty of these advancements lie in their ability to overcome the primary barriers of siRNA delivery while paving the way for clinically viable solutions. This review provides a comprehensive analysis of the latest developments in nanocarrier fabrication, preclinical and clinical studies, and safety assessments. By integrating AI-driven design, multifunctionality, and biomimicry, nanotechnology-enhanced siRNA delivery holds immense potential for the future of precision cancer therapy.

Keywords: AI-Driven Nanocarriers; Cancer Therapy; Multifunctional Nanoparticles; Targeted Drug Delivery; siRNA Delivery.

PubMed Disclaimer

Similar articles

MeSH terms

LinkOut - more resources