Mitoquinol improves phagocytosis and glycolysis in ethanol-exposed macrophages via HIF-1α-PFKP axis
- PMID: 40356076
- PMCID: PMC12311378
- DOI: 10.1093/jimmun/vkaf078
Mitoquinol improves phagocytosis and glycolysis in ethanol-exposed macrophages via HIF-1α-PFKP axis
Abstract
Alcohol use disorder increases sepsis mortality. Acute ethanol exposure impairs pathogen clearance in the macrophages via dampened glycolysis and phagocytosis, exaggerates oxidative stress, and regulates the function of the hypoxia-regulating factor 1α (HIF-1α), a master regulator of glycolysis. Decreased expression of the platelet isoform of phosphofructokinase (PFKP), a key glycolytic enzyme, in ethanol-exposed macrophages, is reported. However, transcriptional regulation of PFKP with ethanol exposure is unclear. We hypothesized that acute ethanol exposure-induced oxidative stress dampens macrophage phagocytosis and glycolysis via the HIF-1α-PFKP axis. In ethanol-exposed mouse bone marrow-derived macrophages with lipopolysaccharide stimulation, we studied (i) reactive oxygen species (ROS), phagocytosis, glycolysis, PFKP, and HIF-1α expressions ± ethanol exposure; (ii) the role of HIF-1α in transcriptionally controlling PFKP messenger RNA by chromatin immunoprecipitation-quantitative polymerase chain reaction technique; and (iii) the effect of mitoquinol (MitoQ), a mitochondria-specific antioxidant, on HIF-1α function, glycolysis, phagocytosis, and pathogen clearance in ethanol-exposed macrophages. Last, we examined the effect of MitoQ on 7-d survival in alcohol vs. vehicle-drinking mice with cecal slurry-induced sepsis. In ethanol-exposed and lipopolysaccharide-stimulated macrophages, we found that (i) excessive total and mitochondrial ROS production and dampened phagocytosis, glycolysis, and PFKP expression; (ii) dysfunctional HIF-1α downregulates PFKP transcription; (iii) MitoQ restrains ROS production, restores HIF-1α function, and improves glycolysis and phagocytosis via preserved PFKP messenger RNA and protein expression; and (iv) MitoQ treatment improves survival and pathogen clearance in ethanol with sepsis mice. In conclusion, we found that the HIF-1α-PFKP axis regulates glycolysis and phagocytosis in ethanol-exposed macrophages and is a potential therapeutic target in ethanol with sepsis.
Keywords: alcohol; macrophages; oxidative stress; phagocytosis; sepsis.
© The Author(s) 2025. Published by Oxford University Press on behalf of The American Association of Immunologists. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
Conflict of interest statement
The authors declare no conflict of interest related to this manuscript.
References
-
- Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014;20:195–203. - PubMed
-
- National Institute on Alcohol Abuse and Alcoholism . Alcohol Use Disorder (AUD) in the United States: age groups and demographic characteristics. 2024. Accessed on February 10, 2024. https://www.niaaa.nih.gov/alcohols-effects-health/alcohol-topics/alcohol...
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous