A thermosensor FUST1 primes heat-induced stress granule formation via biomolecular condensation in Arabidopsis
- PMID: 40360668
- PMCID: PMC12205081
- DOI: 10.1038/s41422-025-01125-4
A thermosensor FUST1 primes heat-induced stress granule formation via biomolecular condensation in Arabidopsis
Erratum in
-
Author Correction: A thermosensor FUST1 primes heat-induced stress granule formation via biomolecular condensation in Arabidopsis.Cell Res. 2025 Jul;35(7):528-529. doi: 10.1038/s41422-025-01134-3. Cell Res. 2025. PMID: 40437049 Free PMC article. No abstract available.
Abstract
The ability to sense cellular temperature and induce physiological changes is pivotal for plants to cope with warming climate. Biomolecular condensation is emerging as a thermo-sensing mechanism, but the underlying molecular basis remains elusive. Here we show that an intrinsically disordered protein FUST1 senses heat via its condensation in Arabidopsis thaliana. Heat-dependent condensation of FUST1 is primarily determined by its prion-like domain (PrLD). All-atom molecular dynamics simulation and experimental validation reveal that PrLD encodes a thermo-switch, experiencing lock-to-open conformational changes that control the intermolecular contacts. FUST1 interacts with integral stress granule (SG) components and localizes in the SGs. Importantly, FUST1 condensation is autonomous and precedes condensation of several known SG markers and is indispensable for SG assembly. Loss of FUST1 significantly delays SG assembly and impairs both basal and acquired heat tolerance. These findings illuminate the molecular basis for thermo-sensing by biomolecular condensation and shed light on the molecular mechanism of heat stress granule assembly.
© 2025. The Author(s).
Conflict of interest statement
Competing interests: The authors declare no competing interests.
Figures







Similar articles
-
Stress granules as transient reservoirs for autophagy proteins: a key mechanism for plant recovery from heat stress.Autophagy. 2025 Jun;21(6):1373-1375. doi: 10.1080/15548627.2025.2465395. Epub 2025 Feb 19. Autophagy. 2025. PMID: 39973093
-
The recruitment of the A-type cyclin TAM to stress granules is crucial for meiotic fidelity under heat.Sci Adv. 2025 Aug 8;11(32):eadr5694. doi: 10.1126/sciadv.adr5694. Epub 2025 Aug 8. Sci Adv. 2025. PMID: 40779619 Free PMC article.
-
The spliceophilin CYP18-2 is mainly involved in the splicing of retained introns under heat stress in Arabidopsis.J Integr Plant Biol. 2023 May;65(5):1113-1133. doi: 10.1111/jipb.13450. Epub 2023 Feb 24. J Integr Plant Biol. 2023. PMID: 36636802
-
Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults.Cochrane Database Syst Rev. 2016 Apr 21;4(4):CD009016. doi: 10.1002/14651858.CD009016.pub2. Cochrane Database Syst Rev. 2016. PMID: 27098439 Free PMC article.
-
Home treatment for mental health problems: a systematic review.Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150. Health Technol Assess. 2001. PMID: 11532236
Cited by
-
FUSTer than stress granules: a prion-like domain warns plants of heat.Cell Res. 2025 Jul;35(7):473-474. doi: 10.1038/s41422-025-01133-4. Cell Res. 2025. PMID: 40437048 No abstract available.
-
Finding and recycling stalled spliceosomes.Nat Struct Mol Biol. 2025 May;32(5):775-776. doi: 10.1038/s41594-025-01536-2. Nat Struct Mol Biol. 2025. PMID: 40199996 No abstract available.
-
Targeting an alternative route: autophagy in RAS-driven cancers.Cell Res. 2025 Jun;35(6):389-390. doi: 10.1038/s41422-025-01127-2. Cell Res. 2025. PMID: 40374948 No abstract available.
-
Translational reprogramming under heat stress: a plant's perspective.R Soc Open Sci. 2025 Jul 16;12(7):250132. doi: 10.1098/rsos.250132. eCollection 2025 Jul. R Soc Open Sci. 2025. PMID: 40727411 Free PMC article. Review.
References
-
- Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science323, 240–244 (2009). - PubMed
-
- Guihur, A., Rebeaud, M. E. & Goloubinoff, P. How do plants feel the heat and survive? Trends Biochem. Sci.47, 824–838 (2022). - PubMed
-
- Kerbler, S. M. & Wigge, P. A. Temperature sensing in plants. Annu. Rev. Plant Biol.74, 341–366 (2023). - PubMed
-
- Vu, L. D., Gevaert, K. & De Smet, I. Feeling the heat: searching for plant thermosensors. Trends Plant Sci.24, 210–219 (2019). - PubMed
MeSH terms
Substances
Grants and funding
- 32222015/National Natural Science Foundation of China (National Science Foundation of China)
- 32450060/National Natural Science Foundation of China (National Science Foundation of China)
- S223401004/National Natural Science Foundation of China (National Science Foundation of China)
- 2022YFA1303400/Ministry of Science and Technology of the People's Republic of China (Chinese Ministry of Science and Technology)
LinkOut - more resources
Full Text Sources