The regulatory potential of transposable elements in maize
- PMID: 40360747
- DOI: 10.1038/s41477-025-02002-z
The regulatory potential of transposable elements in maize
Abstract
The genomes of flowering plants consist largely of transposable elements (TEs), some of which modulate gene regulation and function. However, the repetitive nature of TEs and difficulty of mapping individual TEs by short-read sequencing have hindered our understanding of their regulatory potential. Here we show that long-read chromatin fibre sequencing (Fiber-seq) comprehensively identifies accessible chromatin regions (ACRs) and CpG methylation across the maize genome. We uncover stereotypical ACR patterns at young TEs that degenerate with evolutionary age, resulting in TE enhancers preferentially marked by a novel plant-specific epigenetic feature: simultaneous hyper-CpG methylation and chromatin accessibility. We show that TE ACRs are co-opted as gene promoters and that ACR-containing TEs can facilitate gene amplification. Lastly, we uncover a pervasive epigenetic signature-hypo-5mCpG methylation and diffuse chromatin accessibility-directing TEs to specific loci, including the loci that sparked McClintock's discovery of TEs.
© 2025. The Author(s), under exclusive licence to Springer Nature Limited.
Conflict of interest statement
Competing interests: A.B.S. is a co-inventor on a patent relating to the Fiber-seq method (US17/995,058). The other authors declare no competing interests.
Update of
-
The regulatory potential of transposable elements in maize.bioRxiv [Preprint]. 2025 Jan 31:2024.07.10.602892. doi: 10.1101/2024.07.10.602892. bioRxiv. 2025. Update in: Nat Plants. 2025 Jun;11(6):1181-1192. doi: 10.1038/s41477-025-02002-z. PMID: 39026747 Free PMC article. Updated. Preprint.
Similar articles
-
The regulatory potential of transposable elements in maize.bioRxiv [Preprint]. 2025 Jan 31:2024.07.10.602892. doi: 10.1101/2024.07.10.602892. bioRxiv. 2025. Update in: Nat Plants. 2025 Jun;11(6):1181-1192. doi: 10.1038/s41477-025-02002-z. PMID: 39026747 Free PMC article. Updated. Preprint.
-
Assessing the regulatory potential of transposable elements using chromatin accessibility profiles of maize transposons.Genetics. 2021 Mar 3;217(1):1-13. doi: 10.1093/genetics/iyaa003. Genetics. 2021. PMID: 33683350 Free PMC article.
-
A map of integrated cis-regulatory elements enhances gene-regulatory analysis in maize.Plant Commun. 2025 Jul 14;6(7):101376. doi: 10.1016/j.xplc.2025.101376. Epub 2025 May 13. Plant Commun. 2025. PMID: 40369872 Free PMC article.
-
From Junk DNA to Genomic Treasure: Impacts of Transposable Element DNA, RNA, and Protein in Mammalian Development and Disease.Wiley Interdiscip Rev RNA. 2025 Jul-Aug;16(4):e70022. doi: 10.1002/wrna.70022. Wiley Interdiscip Rev RNA. 2025. PMID: 40804709 Free PMC article. Review.
-
Jump-starting life: balancing transposable element co-option and genome integrity in the developing mammalian embryo.EMBO Rep. 2024 Apr;25(4):1721-1733. doi: 10.1038/s44319-024-00118-5. Epub 2024 Mar 25. EMBO Rep. 2024. PMID: 38528171 Free PMC article. Review.
Cited by
-
A haplotype-resolved view of human gene regulation.bioRxiv [Preprint]. 2025 Jun 2:2024.06.14.599122. doi: 10.1101/2024.06.14.599122. bioRxiv. 2025. PMID: 40501892 Free PMC article. Preprint.
References
-
- Fedoroff, N. V. Transposable genetic elements in maize. Sci. Am. 250, 84–99 (1984). - DOI
Publication types
MeSH terms
Substances
Associated data
Grants and funding
LinkOut - more resources
Full Text Sources